Vector Inverse Park transformΒΆ

__STATIC_FORCEINLINE void riscv_inv_park_f32(float32_t Id, float32_t Iq, float32_t * pIalpha, float32_t * pIbeta, float32_t sinVal, float32_t cosVal)
__STATIC_FORCEINLINE void riscv_inv_park_q31(q31_t Id, q31_t Iq, q31_t * pIalpha, q31_t * pIbeta, q31_t sinVal, q31_t cosVal)
group inv_park

Inverse Park transform converts the input flux and torque components to two-coordinate vector.

end of park group The function operates on a single sample of data and each call to the function returns the processed output. The library provides separate functions for Q31 and floating-point data types.

Algorithm

where

pIalpha and pIbeta are the stator vector components, Id and Iq are rotor vector components and cosVal and sinVal are the cosine and sine values of theta (rotor flux position). ../../../_images/parkInvFormula.png

Fixed-Point Behavior

Care must be taken when using the Q31 version of the Park transform. In particular, the overflow and saturation behavior of the accumulator used must be considered. Refer to the function specific documentation below for usage guidelines.

Functions

__STATIC_FORCEINLINE void riscv_inv_park_f32(float32_t Id, float32_t Iq, float32_t * pIalpha, float32_t * pIbeta, float32_t sinVal, float32_t cosVal)

Floating-point Inverse Park transform.

Return

none

Parameters
  • [in] Id: input coordinate of rotor reference frame d

  • [in] Iq: input coordinate of rotor reference frame q

  • [out] pIalpha: points to output two-phase orthogonal vector axis alpha

  • [out] pIbeta: points to output two-phase orthogonal vector axis beta

  • [in] sinVal: sine value of rotation angle theta

  • [in] cosVal: cosine value of rotation angle theta

__STATIC_FORCEINLINE void riscv_inv_park_q31(q31_t Id, q31_t Iq, q31_t * pIalpha, q31_t * pIbeta, q31_t sinVal, q31_t cosVal)

Inverse Park transform for Q31 version.

Return

none

Scaling and Overflow Behavior

The function is implemented using an internal 32-bit accumulator. The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. There is saturation on the addition, hence there is no risk of overflow.

Parameters
  • [in] Id: input coordinate of rotor reference frame d

  • [in] Iq: input coordinate of rotor reference frame q

  • [out] pIalpha: points to output two-phase orthogonal vector axis alpha

  • [out] pIbeta: points to output two-phase orthogonal vector axis beta

  • [in] sinVal: sine value of rotation angle theta

  • [in] cosVal: cosine value of rotation angle theta