![]() |
NMSIS-NN
Version 1.3.1
NMSIS NN Software Library
|
Functions | |
def | convert_to_x4_weights (weights) |
def | convert_q7_q15_weights (weights) |
Variables | |
int | vec_dim = 64 |
int | row_dim = 32 |
update_weight = np.zeros((row_dim,vec_dim), dtype=int) | |
reset_weight = np.zeros((row_dim,vec_dim), dtype=int) | |
hidden_weight = np.zeros((row_dim,vec_dim), dtype=int) | |
update_bias = np.zeros((row_dim), dtype=int) | |
reset_bias = np.zeros((row_dim), dtype=int) | |
hidden_bias = np.zeros((row_dim), dtype=int) | |
input_data1 = np.zeros((vec_dim-row_dim), dtype=int) | |
input_data2 = np.zeros((vec_dim-row_dim), dtype=int) | |
history_data = np.zeros((row_dim), dtype=int) | |
outfile = open("riscv_nnexamples_gru_test_data.h", "w") | |
weight = np.reshape(update_weight, (row_dim, vec_dim, 1, 1)) | |
def | new_weight = convert_to_x4_weights(weight) |
sep | |
format | |
def para_gen.convert_q7_q15_weights | ( | weights | ) |
def para_gen.convert_to_x4_weights | ( | weights | ) |
para_gen.format |
para_gen.hidden_bias = np.zeros((row_dim), dtype=int) |
para_gen.history_data = np.zeros((row_dim), dtype=int) |
def para_gen.new_weight = convert_to_x4_weights(weight) |
para_gen.outfile = open("riscv_nnexamples_gru_test_data.h", "w") |
para_gen.reset_bias = np.zeros((row_dim), dtype=int) |
int para_gen.row_dim = 32 |
para_gen.sep |
para_gen.update_bias = np.zeros((row_dim), dtype=int) |
int para_gen.vec_dim = 64 |
para_gen.weight = np.reshape(update_weight, (row_dim, vec_dim, 1, 1)) |