NMSIS-DSP  Version 1.2.0
NMSIS DSP Software Library
Complex-by-Complex Multiplication

Multiplies a complex vector by another complex vector and generates a complex result. The data in the complex arrays is stored in an interleaved fashion (real, imag, real, imag, ...). The parameter numSamples represents the number of complex samples processed. The complex arrays have a total of 2*numSamples real values. More...

Functions

void riscv_cmplx_mult_cmplx_f16 (const float16_t *pSrcA, const float16_t *pSrcB, float16_t *pDst, uint32_t numSamples)
 Floating-point complex-by-complex multiplication. More...
 
void riscv_cmplx_mult_cmplx_f32 (const float32_t *pSrcA, const float32_t *pSrcB, float32_t *pDst, uint32_t numSamples)
 Floating-point complex-by-complex multiplication. More...
 
void riscv_cmplx_mult_cmplx_f64 (const float64_t *pSrcA, const float64_t *pSrcB, float64_t *pDst, uint32_t numSamples)
 Floating-point complex-by-complex multiplication. More...
 
void riscv_cmplx_mult_cmplx_q15 (const q15_t *pSrcA, const q15_t *pSrcB, q15_t *pDst, uint32_t numSamples)
 Q15 complex-by-complex multiplication. More...
 
void riscv_cmplx_mult_cmplx_q31 (const q31_t *pSrcA, const q31_t *pSrcB, q31_t *pDst, uint32_t numSamples)
 Q31 complex-by-complex multiplication. More...
 

Detailed Description

Multiplies a complex vector by another complex vector and generates a complex result. The data in the complex arrays is stored in an interleaved fashion (real, imag, real, imag, ...). The parameter numSamples represents the number of complex samples processed. The complex arrays have a total of 2*numSamples real values.

The underlying algorithm is used:

for (n = 0; n < numSamples; n++) {
    pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
    pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
}

There are separate functions for floating-point, Q15, and Q31 data types.

Function Documentation

◆ riscv_cmplx_mult_cmplx_f16()

void riscv_cmplx_mult_cmplx_f16 ( const float16_t *  pSrcA,
const float16_t *  pSrcB,
float16_t *  pDst,
uint32_t  numSamples 
)

Floating-point complex-by-complex multiplication.

Parameters
[in]pSrcApoints to first input vector
[in]pSrcBpoints to second input vector
[out]pDstpoints to output vector
[in]numSamplesnumber of samples in each vector
Returns
none

◆ riscv_cmplx_mult_cmplx_f32()

void riscv_cmplx_mult_cmplx_f32 ( const float32_t *  pSrcA,
const float32_t *  pSrcB,
float32_t *  pDst,
uint32_t  numSamples 
)

Floating-point complex-by-complex multiplication.

Parameters
[in]pSrcApoints to first input vector
[in]pSrcBpoints to second input vector
[out]pDstpoints to output vector
[in]numSamplesnumber of samples in each vector
Returns
none

◆ riscv_cmplx_mult_cmplx_f64()

void riscv_cmplx_mult_cmplx_f64 ( const float64_t *  pSrcA,
const float64_t *  pSrcB,
float64_t *  pDst,
uint32_t  numSamples 
)

Floating-point complex-by-complex multiplication.

Parameters
[in]pSrcApoints to first input vector
[in]pSrcBpoints to second input vector
[out]pDstpoints to output vector
[in]numSamplesnumber of samples in each vector
Returns
none

◆ riscv_cmplx_mult_cmplx_q15()

void riscv_cmplx_mult_cmplx_q15 ( const q15_t *  pSrcA,
const q15_t *  pSrcB,
q15_t *  pDst,
uint32_t  numSamples 
)

Q15 complex-by-complex multiplication.

Parameters
[in]pSrcApoints to first input vector
[in]pSrcBpoints to second input vector
[out]pDstpoints to output vector
[in]numSamplesnumber of samples in each vector
Returns
none
Scaling and Overflow Behavior
The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.

◆ riscv_cmplx_mult_cmplx_q31()

void riscv_cmplx_mult_cmplx_q31 ( const q31_t *  pSrcA,
const q31_t *  pSrcB,
q31_t *  pDst,
uint32_t  numSamples 
)

Q31 complex-by-complex multiplication.

Parameters
[in]pSrcApoints to first input vector
[in]pSrcBpoints to second input vector
[out]pDstpoints to output vector
[in]numSamplesnumber of samples in each vector
Returns
none
Scaling and Overflow Behavior
The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format. Input down scaling is not required.