
Nuclei SDK
Release 0.8.0

Nuclei

May 26, 2025

CONTENTS:

1 Overview 1
1.1 Introduction . 1
1.2 Design and Architecture . 1
1.3 Get Started . 3
1.4 Contributing . 3
1.5 Copyright . 3
1.6 License . 3

2 Quick Startup 5
2.1 Use Nuclei SDK in Nuclei Studio . 5
2.2 Setup Tools and Environment . 6

2.2.1 Use Prebuilt Tools in Nuclei Studio . 6
2.3 Get and Setup Nuclei SDK . 6
2.4 Build, Run and Debug Sample Application . 7

2.4.1 Hardware Preparation . 10
2.4.2 Build Application . 10
2.4.3 Run Application . 12
2.4.4 Debug Application . 12

2.5 Create helloworld Application . 15
2.6 Advanced Usage . 16

3 Developer Guide 19
3.1 Code Style . 19
3.2 Build System based on Makefile . 19

3.2.1 Makefile Structure . 19
3.2.2 Makefile targets of make command . 25
3.2.3 Makefile variables passed by make command . 26
3.2.4 Makefile variables used only in Application Makefile . 36
3.2.5 Build Related Makefile variables used only in Application Makefile 45

3.3 Application Development . 49
3.3.1 Overview . 49
3.3.2 Add Extra Source Code . 50
3.3.3 Add Extra Include Directory . 50
3.3.4 Add Extra Build Options . 50
3.3.5 Optimize For Code Size . 51
3.3.6 Change Link Script . 51
3.3.7 Set Default Make Options . 51

3.4 Build Nuclei SDK Documentation . 51
3.4.1 Install Tools . 51
3.4.2 Build The Documentation . 52

i

4 Contributing 53
4.1 Port your Nuclei SoC into Nuclei SDK . 53
4.2 Submit your issue . 57
4.3 Submit your pull request . 57
4.4 Git commit guide . 57

5 Design and Architecture 59
5.1 Overview . 59

5.1.1 Directory Structure . 59
5.1.2 Project Components . 62

5.2 Nuclei Processor . 63
5.2.1 Introduction . 63
5.2.2 NMSIS in Nuclei SDK . 63
5.2.3 SoC Resource . 64

5.3 SoC . 65
5.3.1 Nuclei Demo SoC . 65
5.3.2 Nuclei Eval SoC . 65
5.3.3 GD32VF103 SoC . 67
5.3.4 GD32VW55x SoC . 70

5.4 Board . 71
5.4.1 Nuclei FPGA Evaluation Kit . 71
5.4.2 GD32VF103V RV-STAR Kit . 74
5.4.3 GD32VF103V Evaluation Kit . 76
5.4.4 Sipeed Longan Nano . 77
5.4.5 GD32VF103C DLink Debugger . 80
5.4.6 TTGO T-Display-GD32 . 82
5.4.7 GD32VW553H Evaluation Kit . 83

5.5 Peripheral . 85
5.5.1 Overview . 85
5.5.2 Usage . 86

5.6 RTOS . 86
5.6.1 Overview . 86
5.6.2 FreeRTOS . 87
5.6.3 UCOSII . 88
5.6.4 RT-Thread . 88
5.6.5 ThreadX . 89

5.7 Application . 90
5.7.1 Overview . 90
5.7.2 Bare-metal applications . 91
5.7.3 FreeRTOS applications . 134
5.7.4 UCOSII applications . 136
5.7.5 RT-Thread applications . 138
5.7.6 ThreadX applications . 141

6 Changelog 143
6.1 V0.8.0 . 143
6.2 V0.7.1 . 146
6.3 V0.7.0 . 146
6.4 V0.6.0 . 147
6.5 V0.5.0 . 149
6.6 V0.4.1 . 153
6.7 V0.4.0 . 154
6.8 V0.3.9 . 156
6.9 V0.3.8 . 157

ii

6.10 V0.3.7 . 158
6.11 V0.3.6 . 159
6.12 V0.3.5 . 159
6.13 V0.3.4 . 161
6.14 V0.3.3 . 162
6.15 V0.3.2 . 162
6.16 V0.3.1 . 163
6.17 V0.3.0 . 164
6.18 V0.2.9 . 165
6.19 V0.2.8 . 165
6.20 V0.2.7 . 165
6.21 V0.2.6 . 166
6.22 V0.2.5 . 166
6.23 V0.2.5-RC1 . 166
6.24 V0.2.4 . 167
6.25 V0.2.3 . 167
6.26 V0.2.2 . 168
6.27 V0.2.1 . 169
6.28 V0.2.0-alpha . 169
6.29 V0.1.1 . 170

7 FAQ 171
7.1 Why I can’t download application? . 171
7.2 How to select correct FTDI debugger? . 172
7.3 Why I can’t download application in Linux? . 172
7.4 Why the provided application is not running correctly in my Nuclei FPGA Evaluation Board? 173
7.5 Why ECLIC handler can’t be installed using ECLIC_SetVector? . 173
7.6 Access to github.com is slow, any workaround? . 173
7.7 `.text’ will not fit in region `ilm’ or `.bss’ will not fit in region `ram’ 173
7.8 cc1: error: unknown cpu ‘nuclei-300-series’ for ‘-mtune’ . 174
7.9 undefined reference to __errno when using libncrt library . 174
7.10 undefined reference to fclose/sprintf similar API provided in system libraries 175
7.11 fatal error: rvintrin.h: No such file or directory . 175
7.12 riscv-nuclei-elf-gcc: not found when using Nuclei Studio 2023.10 175

8 License 177

9 Glossary 183

10 Appendix 185

11 Indices and tables 187

Index 189

iii

iv

CHAPTER

ONE

OVERVIEW

1.1 Introduction

Note: Since 0.5.0 release of Nuclei SDK, we need to use Nuclei Studio >= 2023.10 or Nuclei Toolchain >=2023.10
to build and run it, see release Changelog (page 143).

Note: If you are looking for Nuclei N100 SDK for Nuclei 100 series CPU, please refer to https://doc.nucleisys.com/
nuclei_n100_sdk

The Nuclei Software Development Kit (SDK) is an open-source software platform to speed up the software develop-
ment of SoCs based on Nuclei Processor Cores.

This Nuclei SDK is built based on the NMSIS1, user can access all the APIs provided by NMSIS2 and also the APIs
that provided by Nuclei SDK which mainly for on-board peripherals access such as GPIO, UART, SPI and I2C, etc.

Nuclei SDK provides a good start base for embedded developers which will help them simplify software development
and improve time-to-market through well-designed software framework.

Note: To get a pdf version of this documentation, please click Nuclei SDK Document3

1.2 Design and Architecture

The Nuclei SDK general design and architecture are shown in the block diagram as below.

As Nuclei SDK Design and Architecture Diagram (page 2) shown, The Nuclei SDK provides the following features:

• Nuclei Core API service is built on top of NMSIS4, so silicon vendors of Nuclei processors can easily port their
SoCs to Nuclei SDK, and quickly evaluate software on their SoC.

• NMSIS-NN and NMSIS-DSP library can be also used in Nuclei SDK, and the prebuilt libraries are included in
NMSIS/Library folder of Nuclei SDK.

• Mainly support two Nuclei Processor based SoCs, Nuclei Eval SoC (page 65) and GD32VF103 SoC (page 67)
1 https://github.com/Nuclei-Software/NMSIS
2 https://github.com/Nuclei-Software/NMSIS
3 https://doc.nucleisys.com/nuclei_sdk/nucleisdk.pdf
4 https://github.com/Nuclei-Software/NMSIS

1

https://doc.nucleisys.com/nuclei_n100_sdk
https://doc.nucleisys.com/nuclei_n100_sdk
https://github.com/Nuclei-Software/NMSIS
https://github.com/Nuclei-Software/NMSIS
https://doc.nucleisys.com/nuclei_sdk/nucleisdk.pdf
https://github.com/Nuclei-Software/NMSIS

Nuclei SDK, Release 0.8.0

Fig. 1: Nuclei SDK Design and Architecture Diagram

• Provided realtime operation system service via FreeRTOS (page 87), UCOSII (page 88), RT-Thread (page 88)
and ThreadX (page 89).

• Provided bare-metal service for embedded system software beginners and resource-limited use-cases.

• Currently Nuclei SDK doesn’t define any common device APIs to access GPIO/I2C/SPI/UART devices, which
still relies on the device/peripheral APIs from firmware libraries provided by various silicon vendors, such as
current supported GD32VF103 SoC (page 67).

• Applications are logically separated into three parts:

– General applications for all Nuclei Processors: In the Nuclei SDK software code, the applications pro-
vided are all general applications which can run on all Nuclei Processors, with basic UART service to
provide printf function.

– Nuclei Eval SoC applications: These applications are not included in the Nuclei SDK software code, and
it is maintained separately, see application Overview (page 90), which will use resource from Nuclei Eval
SoC and its evaluation boards to develop applications, which will not be compatible with different boards.

– GD32VF103 SoC applications: These applications are not included in the Nuclei SDK software code,
and it is maintained separately, which will use resource from GD32VF103 SoC and its evaluation boards
to develop applications, which will not be compatible with different boards.

2 Chapter 1. Overview

Nuclei SDK, Release 0.8.0

1.3 Get Started

Please refer to Quick Startup (page 5) to get started to take a try with Nuclei SDK.

1.4 Contributing

Contributing to Nuclei SDK is welcomed, if you have any issue or pull request want to open, you can take a look at
Contributing (page 53) section.

1.5 Copyright

Copyright (c) 2019 - Present, Nuclei System Technology. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the Nuclei System Technology., nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.6 License

Nuclei SDK is an opensource project licensed by Apache License 2.0 (page 177).

1.3. Get Started 3

Nuclei SDK, Release 0.8.0

4 Chapter 1. Overview

CHAPTER

TWO

QUICK STARTUP

2.1 Use Nuclei SDK in Nuclei Studio

Caution: If you are looking for Nuclei 100 series such as N100 support, you need to switch to master_n100 or
nuclei_n100 branch of this repository to try it out.

If you are evaluating Nuclei CPU, in future released nuclei_gen, you will be able to use the generated Nuclei SDK,
please see Usage (page 66).

For Nuclei SDK 0.6.0 version and later ones, please use Nuclei Studio 2024.065 or Nuclei RISC-V
Toolchain/OpenOCD/QEMU 2024.06.

From Nuclei Toolchain 2023.106, both gnu and llvm toolchain are provided, and toolchain prefix changed from
riscv-nuclei-elf- to riscv64-unknown-elf-, and 0.5.0 SDK release will only support this 2023.10 or later
toolchain.

If you want to learn about how to use Nuclei Tools(IDE,Toolchain,Qemu,OpenOCD,XlModel), please checkout https:
//doc.nucleisys.com/nuclei_tools.

If you want to report issues and see application note when using Nuclei Tools or Nuclei Studio, please checkout https:
//github.com/Nuclei-Software/nuclei-studio.

Now the nuclei-sdk released versions are deeply integrated with Nuclei Studio IDE via menu RV-Tools -> NPK
Package Management, and you can directly create nuclei-sdk project in Nuclei Studio IDE Menu File -> New Nuclei
RISC-V C/C++ Project.

You can download Nuclei Studio IDE from Nuclei Download Center7, and follow Nuclei Studio and Nuclei Tools
User Guide8 to learn how to use it.

But if you want to use latest source code of Nuclei SDK, please follow the rest part of this guide to build and run using
Nuclei SDK Build System in Makefile.

5 https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2024.06
6 https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10
7 https://nucleisys.com/download.php
8 https://doc.nucleisys.com/nuclei_tools/

5

https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2024.06
https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10
https://doc.nucleisys.com/nuclei_tools
https://doc.nucleisys.com/nuclei_tools
https://github.com/Nuclei-Software/nuclei-studio
https://github.com/Nuclei-Software/nuclei-studio
https://nucleisys.com/download.php
https://doc.nucleisys.com/nuclei_tools/
https://doc.nucleisys.com/nuclei_tools/

Nuclei SDK, Release 0.8.0

2.2 Setup Tools and Environment

To start to use Nuclei SDK, you need to install the following tools:

From 2020.10 release version of Nuclei Studio, you can directly use the prebuilt tools provided in Nuclei Stu-
dio(strongly suggested), please following Use Prebuilt Tools in Nuclei Studio (page 6).

2.2.1 Use Prebuilt Tools in Nuclei Studio

Since 2020.10 release version of Nuclei Studio, you just need to download the Nuclei Studio IDE from Nuclei Down-
load Center9 for your development OS, and no need to do the following steps below, the prebuilt tools are already
included.

For example:

• In Windows, if you have extracted the Nuclei Studio IDE to D:\Software\NucleiStudio_IDE_202406, then
you can find the prebuilt tools in D:\Software\NucleiStudio_IDE_202406\NucleiStudio\toolchain.

• In Linux, if you have extracted the Nuclei Studio IDE to /home/labdev/NucleiStudio_IDE_202406, then
you can find the prebuilt tools in /home/labdev/NucleiStudio_IDE_202406/NucleiStudio/toolchain.

You can also update tools located in the Nuclei Studio prebuilt tools toolchain by downloading newer version from
Nuclei Tools10 and replace it.

2.3 Get and Setup Nuclei SDK

The source code of Nuclei SDK is maintained in Github11 and Gitee12.

• We mainly maintained github version, and gitee version is mirrored, just for fast access in China.

• Check source code in Nuclei SDK in Github13 or Nuclei SDK in Gitee14 according to your network status.

• Stable version of Nuclei SDK is maintained in master version, if you want release version of Nuclei SDK, please
check in Nuclei SDK Release in Github15.

Here are the steps to clone the latest source code from Github:

• Make sure you have installed Git tool, see https://git-scm.com/download/

• Then open your terminal, and make sure git command can be accessed

• Run git clone https://github.com/Nuclei-Software/nuclei-sdk nuclei-sdk to clone source
code into nuclei-sdk folder

Note:

– If you have no access to github.com, you can also use command git clone https://gitee.com/
Nuclei-Software/nuclei-sdk nuclei-sdk to clone from gitee.

– If you have no internet access, you can also use pre-downloaded nuclei-sdk code, and use it.
9 https://nucleisys.com/download.php

10 https://nucleisys.com/download.php
11 https://github.com
12 https://gitee.com
13 https://github.com/Nuclei-Software/nuclei-sdk
14 https://gitee.com/Nuclei-Software/nuclei-sdk
15 https://github.com/Nuclei-Software/nuclei-sdk/releases

6 Chapter 2. Quick Startup

https://nucleisys.com/download.php
https://nucleisys.com/download.php
https://nucleisys.com/download.php
https://github.com
https://gitee.com
https://github.com/Nuclei-Software/nuclei-sdk
https://gitee.com/Nuclei-Software/nuclei-sdk
https://github.com/Nuclei-Software/nuclei-sdk/releases
https://git-scm.com/download/

Nuclei SDK, Release 0.8.0

– If the backup repo is not up to date, you can import github repo in gitee by yourself, see https://gitee.com/
projects/import/url

• Create tool environment config file for Nuclei SDK

Note: If you want to use Terapines ZCC toolchain, you can download it from https://www.terapines.com/, or
use Nuclei Studio >= 2024.06, a Terapines ZCC Lite version is integrated in <NucleiStudio>/toolchain/zcc
folder, and you also need to add extra PATH into your environment, like this:

– Windows: execute set PATH=\path\to\zcc\bin;%PATH% in windows cmd terminal before run Nuclei
SDK

– Linux: execute set PATH=/path/to/zcc/bin:$PATH in linux shell terminal before build Nuclei SDK

– Windows
If you want to use Nuclei SDK in Windows Command Prompt terminal, you need to create
setup_config.bat in nuclei-sdk folder, and open this file your editor, and paste the following
content, assuming you followed Setup Tools and Environment (page 6), and prebuilt tools located
in D:\Software\NucleiStudio_IDE_202406\NucleiStudio\toolchain, otherwise please use
your correct tool root path.

set NUCLEI_TOOL_ROOT=D:\Software\NucleiStudio_IDE_202406\NucleiStudio\
→˓toolchain

If you want to use Nuclei SDK in Windows PowerShell terminal, you need to create a setup_config.
ps1 in nuclei-sdk folder, and edit this file with content below if your prebuilt tools are located in
D:\Software\NucleiStudio_IDE_202406\NucleiStudio\toolchain:

$NUCLEI_TOOL_ROOT="D:\Software\NucleiStudio_IDE_202406\NucleiStudio\
→˓toolchain"

– Linux
Create setup_config.sh in nuclei-sdk folder, and open this file your editor, and paste the follow-
ing content, assuming you followed Setup Tools and Environment (page 6) and prebuilt tools located in
/home/labdev/NucleiStudio_IDE_202406/NucleiStudio/toolchain, otherwise please use
your correct tool root path.

NUCLEI_TOOL_ROOT=/home/labdev/NucleiStudio_IDE_202406/NucleiStudio/toolchain

2.4 Build, Run and Debug Sample Application

Assume you have followed steps in Get and Setup Nuclei SDK (page 6) to clone source code and create files below:

• setup_config.bat for run in Windows Command Prompt terminal

• setup_config.ps1 for run in Windows PowerShell terminal

• setup_config.sh for run in Linux Bash terminal

To build, run and debug application, you need to open command terminal in nuclei-sdk folder.

• For Windows users, you can open Windows Command Prompt terminal and cd to nuclei-sdk folder, then run
the following commands to setup build environment for Nuclei SDK, the output will be similar as this screenshot
Setup Build Environment for Nuclei SDK in Windows Command Prompt (page 8):

2.4. Build, Run and Debug Sample Application 7

https://gitee.com/projects/import/url
https://gitee.com/projects/import/url
https://www.terapines.com/

Nuclei SDK, Release 0.8.0

1 setup.bat
2 echo %PATH%
3 where riscv64-unknown-elf-gcc openocd make rm
4 make help

Fig. 1: Setup Build Environment for Nuclei SDK in Windows Command Prompt

• For Linux users, you can open Linux Bash terminal and cd to nuclei-sdk folder, then run the following
commands to setup build environment for Nuclei SDK, the output will be similar as this screenshot Setup Build
Environment for Nuclei SDK in Linux Bash (page 9):

1 source setup.sh
2 echo $PATH
3 which riscv64-unknown-elf-gcc openocd make rm
4 make help

Note:

8 Chapter 2. Quick Startup

Nuclei SDK, Release 0.8.0

Fig. 2: Setup Build Environment for Nuclei SDK in Linux Bash

• Only first line setup.bat or source setup.sh are required before build, run or debug application. The
setup.bat and setup.sh are just used to append Nuclei RISC-V GCC Toolchain, OpenOCD and Build-Tools
binary paths into environment variable PATH

• line 2-4 are just used to check whether build environment is setup correctly, especially the PATH of Nuclei Tools
are setup correctly, so we can use the riscv64-unknown-elf-xxx, openocd, make and rm tools

• If you know how to append Nuclei RISC-V GCC Toolchain, OpenOCD and Build-Tools binary paths to PATH
variable in your OS environment, you can also put the downloaded Nuclei Tools as you like, and no need to run
setup.bat or source setup.sh

• If you want to run in Windows PowerShell, please run . .\setup.ps1 instead of setup.bat, and
setup_config.ps1 must be created as described in Get and Setup Nuclei SDK (page 6).

Here for a quick startup, this guide will take board GD32VF103V RV-STAR Kit (page 74) for example to demostrate
how to setup hardware, build run and debug application in Windows.

The demo application, we will take application/baremetal/helloworld for example.

First of all, please reuse previously build environment command terminal.

Run cd application/baremetal/helloworld to cd the helloworld example folder.

2.4. Build, Run and Debug Sample Application 9

Nuclei SDK, Release 0.8.0

2.4.1 Hardware Preparation

Please check Board (page 71) and find your board’s page, and follow Setup section to setup your hardware, mainly
JTAG debugger driver setup and on-board connection setup.

• Power on the GD32VF103V RV-STAR Kit (page 74) board, and use USB Type-C data cable to connect the board
and your PC, make sure you have setup the JTAG driver correctly, and you can see JTAG port and serial port.

• Open a UART terminal tool such as TeraTerm in Windows16 or Minicom in Linux17, and minitor the serial port
of the Board, the UART baudrate is 115200 bps

• If you are building example for your own SoC and Board, please pass correct SOC (page 26) and BOARD
(page 27) make variable. eg. If you SoC is evalsoc and Board is nuclei_fpga_eval, just pass SOC=evalsoc
BOARD=nuclei_fpga_eval to make instead of the one mentioned below. If your default board for this evalsoc
is nuclei_fpga_eval, then you don’t need to pass BOARD=nuclei_fpga_eval.

• If you don’t pass any SOC or BOARD via make, evalsoc and nuclei_fpga_eval are default SoC and Board.

If you just want to try on Nuclei Evaluation SoC, no need to pass SOC or BOARD, the default value is that, you just
need to pass correct CORE (page 30), ARCH_EXT (page 31) and DOWNLOAD (page 29)

2.4.2 Build Application

We need to build application for this board GD32VF103V RV-STAR Kit (page 74) using this command line:

Note:

• If you want to run on Nuclei Evaluation SoC, see Nuclei Eval SoC (page 65), recommend to run cpuinfo (page 92)

• Since below steps are taking gd32vf103 SoC based board gd32vf103v_rvstar to do demostration, and when
you pass SOC=gd32vf103, the default BOARD will be gd32vf103v_rvstar, so do you don’t need to pass
BOARD=gd32vf103v_rvstar

• You can check default SOC/BOARD/CORE information passed by using make target info, eg. make
SOC=gd32vf103 info, for more information, please check Makefile targets of make command (page 25).

clean application if build in other application before or build for other board
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar clean
first build choice: using full command line
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar all
second build choice: using simple command line, since when SOC=gd32vf103, default␣
→˓BOARD is gd32vf103v_rvstar
make SOC=gd32vf103 all

Here is the sample output of this command:

NOTICE: You can check this configuration whether it matched your desired configuration
Current Configuration: RISCV_ARCH=rv32imac RISCV_ABI=ilp32 SOC=gd32vf103␣
→˓BOARD=gd32vf103v_rvstar CORE=n205 DOWNLOAD=flashxip
"Assembling : " ../../../SoC/gd32vf103/Common/Source/GCC/intexc_gd32vf103.S
"Assembling : " ../../../SoC/gd32vf103/Common/Source/GCC/startup_gd32vf103.S
"Compiling : " ../../../SoC/gd32vf103/Board/gd32vf103v_rvstar/Source/gd32vf103v_rvstar.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_adc.c

(continues on next page)

16 http://ttssh2.osdn.jp/
17 https://help.ubuntu.com/community/Minicom

10 Chapter 2. Quick Startup

http://ttssh2.osdn.jp/
https://help.ubuntu.com/community/Minicom

Nuclei SDK, Release 0.8.0

(continued from previous page)

"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_bkp.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_can.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_crc.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_dac.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_dbg.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_dma.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_exmc.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_exti.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_fmc.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_fwdgt.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_gpio.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_i2c.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_pmu.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_rcu.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_rtc.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_spi.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_timer.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_usart.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Drivers/gd32vf103_wwdgt.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/close.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/fstat.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/gettimeofday.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/isatty.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/lseek.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/read.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/sbrk.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/Stubs/write.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/gd32vf103_soc.c
"Compiling : " ../../../SoC/gd32vf103/Common/Source/system_gd32vf103.c
"Compiling : " hello_world.c
"Linking : " hello_world.elf
text data bss dec hex filename
13022 112 2290 15424 3c40 hello_world.elf

As you can see, that when the application is built successfully, the elf will be generated and will also print the size
information of the hello_world.elf.

Note:

• In order to make sure that there is no application build before, you can run make SOC=gd32vf103
BOARD=gd32vf103v_rvstar clean to clean previously built objects and build dependency files.

• About the make variable or option(SOC, BOARD) passed to make command, please refer to Build System based
on Makefile (page 19).

2.4. Build, Run and Debug Sample Application 11

Nuclei SDK, Release 0.8.0

2.4.3 Run Application

If the application is built successfully for this board GD32VF103V RV-STAR Kit (page 74), then you can run it using
this command line:

make SOC=gd32vf103 BOARD=gd32vf103v_rvstar upload

Here is the sample output of this command:

"Download and run hello_world.elf"
riscv64-unknown-elf-gdb hello_world.elf -ex "set remotetimeout 240" \

-ex "target remote | openocd -c \"gdb_port pipe; log_output openocd.log\" -f ../.
→˓./../SoC/gd32vf103/Board/gd32vf103v_rvstar/openocd_gd32vf103.cfg" \

--batch -ex "monitor halt" -ex "monitor halt" -ex "monitor flash protect 0 0␣
→˓last off" -ex "load" -ex "monitor resume" -ex "monitor shutdown" -ex "quit"
D:\Software\Nuclei\gcc\bin\riscv64-unknown-elf-gdb.exe: warning: Couldn't determine a␣
→˓path for the index cache directory.
Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2019-12-12-
→˓07:43)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
_start0800 () at ../../../SoC/gd32vf103/Common/Source/GCC/startup_gd32vf103.S:359
359 j 1b
cleared protection for sectors 0 through 127 on flash bank 0

Loading section .init, size 0x266 lma 0x8000000
Loading section .text, size 0x2e9c lma 0x8000280
Loading section .rodata, size 0x1f0 lma 0x8003120
Loading section .data, size 0x70 lma 0x8003310
Start address 0x800015c, load size 13154
Transfer rate: 7 KB/sec, 3288 bytes/write.
shutdown command invoked
A debugging session is active.

Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) [answered Y; input not from terminal]
[Inferior 1 (Remote target) detached]

As you can see the application is uploaded successfully using openocd and gdb, then you can check the output in your
UART terminal, see Nuclei SDK Hello World Application UART Output (page 13).

2.4.4 Debug Application

If the application is built successfully for this board GD32VF103V RV-STAR Kit (page 74), then you can debug it using
this command line:

make SOC=gd32vf103 BOARD=gd32vf103v_rvstar debug

1. The program is not loaded automatically when you enter to debug state, just in case you want to debug the
program running on the board.

12 Chapter 2. Quick Startup

Nuclei SDK, Release 0.8.0

Fig. 3: Nuclei SDK Hello World Application UART Output

"Download and debug hello_world.elf"
riscv64-unknown-elf-gdb hello_world.elf -ex "set remotetimeout 240" \

-ex "target remote | openocd -c \"gdb_port pipe; log_output openocd.log\" -
→˓f ../../../SoC/gd32vf103/Board/gd32vf103v_rvstar/openocd_gd32vf103.cfg"
D:\Software\Nuclei\gcc\bin\riscv64-unknown-elf-gdb.exe: warning: Couldn't determine␣
→˓a path for the index cache directory.
GNU gdb (GDB) 8.3.0.20190516-git
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=i686-w64-mingw32 --target=riscv64-unknown-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.
--Type <RET> for more, q to quit, c to continue without paging--

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from hello_world.elf...
Remote debugging using | openocd -c \"gdb_port pipe; log_output openocd.log\" -f ../
→˓../../SoC/gd32vf103/Board/gd32vf103v_rvstar/openocd_gd32vf103.cfg
Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2019-12-
→˓12-07:43)

(continues on next page)

2.4. Build, Run and Debug Sample Application 13

Nuclei SDK, Release 0.8.0

(continued from previous page)

Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
_start0800 () at ../../../SoC/gd32vf103/Common/Source/GCC/startup_gd32vf103.S:359
359 j 1b

2. If you want to load the built application, you can type load to load the application.

(gdb) load
Loading section .init, size 0x266 lma 0x8000000
Loading section .text, size 0x2e9c lma 0x8000280
Loading section .rodata, size 0x1f0 lma 0x8003120
Loading section .data, size 0x70 lma 0x8003310
Start address 0x800015c, load size 13154
Transfer rate: 7 KB/sec, 3288 bytes/write.

3. If you want to set a breakpoint at main, then you can type b main to set a breakpoint.

(gdb) b main
Breakpoint 1 at 0x8001b04: file hello_world.c, line 85.

4. If you want to set more breakpoints, you can do as you like.

5. Then you can type c, then the program will stop at main

(gdb) c
Continuing.
Note: automatically using hardware breakpoints for read-only addresses.

Breakpoint 1, main () at hello_world.c:85
85 srand(__get_rv_cycle() | __get_rv_instret() | __RV_CSR_READ(CSR_
→˓MCYCLE));

6. Then you can step it using n (short of next) or s (short of step)

(gdb) n
86 uint32_t rval = rand();
(gdb) n
87 rv_csr_t misa = __RV_CSR_READ(CSR_MISA);
(gdb) s
89 printf("MISA: 0x%lx\r\n", misa);
(gdb) n
90 print_misa();
(gdb) n
92 printf("Hello World!\r\n");
(gdb) n
93 printf("Hello World!\r\n");

7. If you want to quit debugging, then you can press CTRL - c, and type q to quit debugging.

(gdb) Quit
(gdb) q
A debugging session is active.

(continues on next page)

14 Chapter 2. Quick Startup

Nuclei SDK, Release 0.8.0

(continued from previous page)

Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) y
Detaching from program: D:\workspace\Sourcecode\nuclei-sdk\application\baremetal\
→˓helloworld\hello_world.elf, Remote target
Ending remote debugging.
[Inferior 1 (Remote target) detached]

Note:

• More about how to debug using gdb, you can refer to the GDB User Manual18.

• If you want to debug using Nuclei Studio, you can open Nuclei Studio, and create a debug configuration, and
choose the application elf, and download and debug in IDE.

2.5 Create helloworld Application

If you want to create your own helloworld application, it is also very easy.

There are several ways to achieve it, see as below:

• Method 1: You can find a most similar sample application folder and copy it, such as application/
baremetal/helloworld, you can copy and rename it as application/baremetal/hello

– Open the Makefile in application/baremetal/hello

1. Change TARGET = hello_world to TARGET = hello

– Open the hello_world.c in application/baremetal/hello, and replace the content using code be-
low:

1 // See LICENSE for license details.
2 #include <stdio.h>
3 #include <time.h>
4 #include <stdlib.h>
5 #include "nuclei_sdk_soc.h"
6

7 int main(void)
8 {
9 printf("Hello World from Nuclei RISC-V Processor!\r\n");

10 return 0;
11 }

– Save all the changes, and then you can follow the steps described in Build, Run and Debug Sample Appli-
cation (page 7) to run or debug this new application.

• Method 2: You can also do it from scratch, with just create simple Makefile and main.c

– Create new folder named hello in application/baremetal

– Create two files named Makefile and main.c

– Open Makefile and edit the content as below:
18 https://www.gnu.org/software/gdb/documentation/

2.5. Create helloworld Application 15

https://www.gnu.org/software/gdb/documentation/

Nuclei SDK, Release 0.8.0

1 TARGET = hello
2

3 NUCLEI_SDK_ROOT = ../../..
4

5 SRCDIRS = .
6

7 INCDIRS = .
8

9 include $(NUCLEI_SDK_ROOT)/Build/Makefile.base

– Open main.c and edit the content as below:

1 // See LICENSE for license details.
2 #include <stdio.h>
3 #include <time.h>
4 #include <stdlib.h>
5 #include "nuclei_sdk_soc.h"
6

7 int main(void)
8 {
9 printf("Hello World from Nuclei RISC-V Processor!\r\n");

10 return 0;
11 }

– Save all the changes, and then you can follow the steps described in Build, Run and Debug Sample Appli-
cation (page 7) to run or debug this new application.

Note:

• If your are looking for how to run for other boards, please ref to Board (page 71).

• Please refer to Application Development (page 49) and Build System based on Makefile (page 19) for more
information.

• If you want to access SoC related APIs, please use nuclei_sdk_soc.h header file.

• If you want to access SoC and board related APIs, please use nuclei_sdk_hal.h header file.

• For simplified application development, you can use nuclei_sdk_hal.h directly.

2.6 Advanced Usage

For more advanced usage, please follow the items as below:

• Click Design and Architecture (page 59) to learn about Nuclei SDK Design and Architecture, Board and SoC
support documentation.

• Click Developer Guide (page 19) to learn about Nuclei SDK Build System and Application Development.

• Click Application (page 90) to learn about each application usage and expected output.

Note:

16 Chapter 2. Quick Startup

Nuclei SDK, Release 0.8.0

• If you met some issues in using this guide, please check FAQ (page 171), if still not solved, please Submit your
issue (page 57).

• If you are trying to develop Nuclei SDK application in IDE, now you have three choices:

1. Recommended: Since Nuclei Studio 2020.08, Nuclei SDK will be deeply integrated with Nuclei Studio
IDE, you can easily create a Nuclei SDK Project in Nuclei Studio through IDE Project Wizard, and easily
configure selected Nuclei SDK project using SDK Configuration Tool, for more details, please click Nuclei
Tools19 to download Nuclei Studio IDE, and refer to the Nuclei Studio and Nuclei Tools User Guide20 for
how to use it.

2. Now Terapines ZCC Lite is deeply integrated in Nuclei Studio >= 2024.06, so you just need to follow
Get and Setup Nuclei SDK (page 6) to setup PATH for Terapines ZCC, and in Nuclei SDK, you can just
pass TOOCHAIN=terapines during make to take a try with Terapines ZCC. From 0.7.0 release, you can
create project in Nuclei Studio >= 2024.06 using Terapines ZCC, see Using Terapines ZCC Toolchain in
Nuclei Studio21.

3. You can take a try using IAR workbench, we provided prebuilt projects directly in Nuclei SDK, just check
the ideprojects/iar/README.md22 to learn about it.

4. You can take a try using Segger embedded studio, we provided prebuilt projects using Nuclei SDK release
version, click Segger embedded studio projects for Nuclei SDK23 to learn about it

5. You can also take a try with the Cross-platform PlatformIO IDE, we provided our Nuclei platform and
Nuclei SDK release version in PlatformIO, click Platform Nuclei in PlatformIO24 to learn more about
it, or you can visit Light on onboard LED of RVSTAR board using PlatformIO(Chinese)25 to play with
PlatformIO for Nuclei.

6. You can also use source code in Nuclei SDK as base, and easily integrate with other IDE tools, such as
ZStudio IDE26, Compiler IDE27 and others.

19 https://nucleisys.com/download.php
20 https://doc.nucleisys.com/nuclei_tools/
21 https://1nfinite.ai/t/nuclei-studio-2024-06-ide-terapines-zcc/113
22 https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md
23 https://github.com/riscv-mcu/ses_nuclei_sdk_projects
24 https://github.com/Nuclei-Software/platform-nuclei
25 https://www.rvmcu.com/community-topic-id-310.html
26 https://1nfinite.ai/t/zstudio-ide-risc-v/71
27 https://www.compiler-dev.com/

2.6. Advanced Usage 17

https://nucleisys.com/download.php
https://nucleisys.com/download.php
https://doc.nucleisys.com/nuclei_tools/
https://1nfinite.ai/t/nuclei-studio-2024-06-ide-terapines-zcc/113
https://1nfinite.ai/t/nuclei-studio-2024-06-ide-terapines-zcc/113
https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md
https://github.com/riscv-mcu/ses_nuclei_sdk_projects
https://github.com/Nuclei-Software/platform-nuclei
https://www.rvmcu.com/community-topic-id-310.html
https://1nfinite.ai/t/zstudio-ide-risc-v/71
https://www.compiler-dev.com/

Nuclei SDK, Release 0.8.0

18 Chapter 2. Quick Startup

CHAPTER

THREE

DEVELOPER GUIDE

3.1 Code Style

In Nuclei SDK, we use EditorConfig28 to maintain our development coding styles and astyle29 tool to format our source
code.

• Our editorconfig file30 is maintained in the root directory of Nuclei SDK, called .editorconfig.

• Our astyle option file is maintained in the root directory of Nuclei SDK, called .astylerc.

For example, if you want to format your applicaton code(.c/.h) located in application/baremetal/demo_timer,
you can run the following command:

make sure astyle is present in PATH
which astyle
format code
astyle --options=.astylerc --recursive application/baremetal/demo_timer/*.c,*.h

You can install editorconfig plugins for your editor, see https://editorconfig.org/#download.

We use doxygen31 to comment C/C++ source code.

3.2 Build System based on Makefile

Nuclei SDK’s build system is based on Makefile, user can build, run ordebug application in Windows and Linux.

3.2.1 Makefile Structure

Nuclei SDK’s Makefiles mainly placed in <NUCLEI_SDK_ROOT>/Build directory and an extra Makefile located in
<NUCLEI_SDK_ROOT>/Makefile.

This extra <NUCLEI_SDK_ROOT>/Makefile introduce a new Make variable called PROGRAM to provide the
ability to build or run application in <NUCLEI_SDK_ROOT>.

For example, if you want to rebuild and upload application application/baremetal/timer_test, you can run make
PROGRAM=application/baremetal/timer_test clean upload to achieve it.

The <NUCLEI_SDK_ROOT>/Build directory content list as below:
28 https://editorconfig.org/
29 http://astyle.sourceforge.net/
30 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/.editorconfig
31 http://www.doxygen.nl/manual/docblocks.html

19

https://editorconfig.org/
http://astyle.sourceforge.net/
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/.editorconfig
https://editorconfig.org/#download
http://www.doxygen.nl/manual/docblocks.html

Nuclei SDK, Release 0.8.0

gmsl/
toolchain/
Makefile.base
Makefile.conf
Makefile.core
Makefile.components
Makefile.files
Makefile.global -> Created by user
Makefile.misc
Makefile.rtos
Makefile.rules
Makefile.soc

The file or directory is used explained as below:

Makefile.base

This Makefile.base file is used as Nuclei SDK build system entry file, application’s Makefile need to include this file
to use all the features of Nuclei SDK build system.

It will expose Make variables or options such as BOARD or SOC passed by make command, click Makefile variables
passed by make command (page 26) to learn more.

This file will include optional Makefile.global (page 24) and Makefile.local (page 25) which allow user to set custom
global Makefile configurations and local application Makefile configurations.

This file will include the following makefiles:

• gmsl (page 20): additional library functions provided via gmsl

• toolchain (page 21): additional library functions provided via gmsl

• Makefile.misc (page 21): misc functions and OS check helpers

• Makefile.conf (page 21): main Makefile configuration entry

• Makefile.rules (page 21): make rules of this build system

gmsl

The gmsl directory consist of the GNU Make Standard Library (GMSL)32, which is an a library of functions to be used
with GNU Make’s $(call) that provides functionality not available in standard GNU Make.

We use this gmsl tool to make sure we help us achieve some linux command which is only supported in Linux.
32 http://sourceforge.net/projects/gmsl/

20 Chapter 3. Developer Guide

http://sourceforge.net/projects/gmsl/

Nuclei SDK, Release 0.8.0

toolchain

The toolchain directory contains different toolchain support makefiles, such as Nuclei GNU toolchain, Nuclei LLVM
toolchain and Terapines toolchain, if you want to add a different toolchain support, you also need to add a new toolchain
makefile in it, you can refer to existing ones.

Since different toolchain support is added, in application Makefile, if your toolchain options are not compa-
tiable with others, to provide a compatiable application for different toolchain, we recommend you to add
toolchain_$(TOOLCHAIN).mk file in your application folder, and in application Makefile include this file, you can
refer to application/baremetal/benchmark/coremark to see example usage.

Makefile.misc

This Makefile.misc file mainly provide these functions:

• Define get_csrcs, get_asmsrcs, get_cxxsrcs and check_item_exist make functions

– get_csrcs: Function to get *.c or *.C source files from a list of directories, no ability to do recursive
match. e.g. $(call get_csrcs, csrc csrc/abc) will return c source files in csrc and csrc/abc
directories.

– get_asmsrcs: Function to get *.s or *.S source files from a list of directories, no ability to do recursive
match. e.g. $(call get_asmsrcs, asmsrc asmsrc/abc) will return asm source files in asmsrc and
asmsrc/abc directories.

– get_cxxsrcs: Function to get *.cpp or *.CPP source files from a list of directories, no ability to do recur-
sive match. e.g. $(call get_cxxsrcs, cppsrc cppsrc/abc) will return cpp source files in cppsrc
and cppsrc/abc directories.

– check_item_exist: Function to check if item existed in a set of items. e.g. $(call check_item_exist,
flash, flash ilm flashxip) will check flash whether existed in flash ilm flashxip, if existed,
return flash, otherwise return empty.

• Check and define OS related functions, and also a set of trace print functions.

Makefile.conf

This Makefile.conf file will define the following items:

• Toolchain related variables used during compiling

• Debug related variables

• Include Makefile.files (page 22) and Makefile.rtos (page 23)

• Collect all the C/C++/ASM compiling and link options

Makefile.rules

This Makefile.rules file will do the following things:

• Collect all the sources during compiling

• Define all the rules used for building, uploading and debugging

• Print help message for build system

3.2. Build System based on Makefile 21

Nuclei SDK, Release 0.8.0

Makefile.files

This Makefile.files file will do the following things:

• Define common C/C++/ASM source and include directories

• Define common C/C++/ASM macros

Makefile.soc

This Makefile.soc will include valid makefiles located in <NUCLEI_SDK_ROOT>/SoC/<SOC>/build.mk accord-
ing to the SOC (page 26) makefile variable setting.

It will define the following items:

• DOWNLOAD and CORE variables

– For Nuclei Eval SoC (page 65), we can support all the modes defined in DOWNLOAD (page 29), and CORE
list defined in Makefile.core (page 24)

– For GD32VF103 SoC (page 67), The CORE is fixed to N205, since it is a real SoC chip, and only FlashXIP
download mode is supported

• Linker script used according to the DOWNLOAD mode settings

• OpenOCD debug configuration file used for the SoC and Board

• Some extra compiling or debugging options

A valid SoC should be organized like this, take evalsoc as example:

SoC/evalsoc
Board

nuclei_fpga_eval
Include

board_nuclei_fpga_eval.h
nuclei_sdk_hal.h

Source
IAR
GCC

openocd_evalsoc.cfg
build.mk
Common

Include
evalsoc.h
... ...
evalsoc_uart.h
nuclei_sdk_soc.h
system_evalsoc.h

Source
Drivers

... ...
evalsoc_uart.c

GCC
intexc_evalsoc.S
intexc_evalsoc_s.S
startup_evalsoc.S

IAR
(continues on next page)

22 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

(continued from previous page)

intexc_evalsoc.S
intexc_evalsoc_s.S
startup_evalsoc.c

Stubs
newlib
libncrt
iardlib

evalsoc_common.c
system_evalsoc.c

Makefile.rtos

This Makefile.rtos will include <NUCLEI_SDK_ROOT>/OS/<RTOS>/build.mk according to our RTOS (page 37)
variable.

A valid rtos should be organized like this, take UCOSII as example:

OS/UCOSII/
arch
build.mk
license.txt
readme.md
source

If no RTOS (page 37) is chosen, then RTOS code will not be included during compiling, user will develop baremetal
application.

If FreeRTOS, UCOSII or RTThread RTOS is chosen, then FreeRTOS UCOSII, or RTThread source code will be
included during compiling, and extra compiler option -DRTOS_$(RTOS_UPPER) will be passed, then user can develop
RTOS application.

For example, if FreeRTOS is selected, then -DRTOS_FREERTOS compiler option will be passed.

Makefile.components

This Makefile.components will include build.mk Makefiles of selected components defined via makefile variable
MIDDLEWARE (page 38), the Makefiles are placed in the sub-folders of <NUCLEI_SDK_ROOT>/Components/.

A valid middleware component should be organized like this, take fatfs as example :

Components/fatfs/
build.mk
documents
LICENSE.txt
source

For example, if there are two valid middleware components in <NUCLEI_SDK_ROOT>/Components/, called fatfs
and tjpgd, and you want to use them in your application, then you can set MIDDLEWARE like this MIDDLEWARE :=
fatfs tjpgd, then the application will include these two middlewares into build process.

3.2. Build System based on Makefile 23

Nuclei SDK, Release 0.8.0

Makefile.core

This Makefile.core is used to define the RISC-V ARCH and ABI used during compiling of the CORE list supported.

If you want to add a new CORE, you need to add a new line before SUPPORTED_CORES, and append the new
CORE to SUPPORTED_CORES.

For example, if you want to add a new CORE called n308, and the n308’s ARCH and ABI are rv32imafdc and
ilp32d, then you can add a new line like this N308_CORE_ARCH_ABI = rv32imafdc ilp32d, and append n308 to
SUPPORTED_CORES like this SUPPORTED_CORES = n201 n201e n203 n203e n308 nx600

Note:

• The appended new CORE need to lower-case, e.g. n308

• The new defined variable N308_CORE_ARCH_ABI need to be all upper-case.

Makefile.global

This Makefile.global file is an optional file, and will not be tracked by git, user can create own Makefile.global in
<NUCLEI_SDK_ROOT>/Build directory.

In this file, user can define custom SOC, BOARD, DOWNLOAD options to overwrite the default configuration.

For example, if you will use only the GD32VF103V RV-STAR Kit (page 74), you can create the <NU-
CLEI_SDK_ROOT>/Build/Makefile.global as below:

SOC ?= gd32vf103
BOARD ?= gd32vf103v_rvstar
DOWNLOAD ?= flashxip

Note:

• If you add above file, then you can build, run, debug application without passing SOC, BOARD and DOWN-
LOAD variables using make command for GD32VF103V RV-STAR Kit (page 74) board, e.g.

– Build and run application for GD32VF103V RV-STAR Kit (page 74): make run

– Debug application for GD32VF103V RV-STAR Kit (page 74): make debug

• The GD32VF103V RV-STAR Kit (page 74) only support FlashXIP download mode.

• If you create the Makefile.global like above sample code, you will also be able to use Nuclei SDK build system
as usually, it will only change the default SOC, BOARD and DOWNLOAD, but you can still override the default
variable using make command, such as make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm

24 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

Makefile.local

As the Makefile.global (page 24) is used to override the default Makefile configurations, and the Makefile.local is used
to override application level Makefile configurations, and also this file will not be tracked by git.

User can create Makefile.local file in any of the application folder, placed together with the application Makefile,
for example, you can create Makefile.local in application/baremetal/helloworld to override default make
configuration for this helloworld application.

If you want to change the default board for helloworld to use GD32VF103V RV-STAR Kit (page 74), you can create
application/baremetal/helloworld/Makefile.local as below:

SOC ?= gd32vf103
BOARD ?= gd32vf103v_rvstar
DOWNLOAD ?= flashxip

Note:

• This local make configuration will override global and default make configuration.

• If you just want to change only some applications’ makefile configuration, you can add and update Makefile.
local for those applications.

3.2.2 Makefile targets of make command

Here is a list of the Make targets supported by Nuclei SDK Build System (page 25).

Table 1: Make targets supported by Nuclei SDK Build System

target description
help display help message of Nuclei SDK build system
info display selected configuration information
showflags display asm/c/cxx/ld flags and other info
showtoolver display toolchain/qemu/openocd version
all build application with selected configuration
clean clean application with selected configuration
dasm build and dissemble application with selected configuration
bin build and generate application binary with selected configuration
upload build and upload application with selected configuration
run_openocd run openocd server with selected configuration, and wait for gdb at port specified by

$(GDB_PORT)
run_gdb build and start gdb process with selected configuration, and connect to local-

host:$(GDB_PORT)
debug build and debug application with selected configuration
run_qemu run application on Nuclei Qemu Evalsoc33 machine with selected configuration
run_xlspike internal used only, run application on xlspike with selected configuration
run_xlmodel run application on Nuclei Near Cycle Model34 with selected configuration
size show program size

Note:
33 https://doc.nucleisys.com/nuclei_tools/qemu/intro.html
34 https://doc.nucleisys.com/nuclei_tools/xlmodel/intro.html

3.2. Build System based on Makefile 25

https://doc.nucleisys.com/nuclei_tools/qemu/intro.html
https://doc.nucleisys.com/nuclei_tools/xlmodel/intro.html

Nuclei SDK, Release 0.8.0

• The selected configuration is controlled by Makefile variables passed by make command (page 26)

• For run_openocd and run_gdb target, if you want to change a new gdb port, you can pass the variable
GDB_PORT (page 35)

• For run_qemu, only SOC=evalsoc supported, when do this target, you can pass SIMU=qemu to support auto-exit,
project recompiling is required.

• For run_xlspike, only SOC=evalsoc supported, when do this target, you can pass SIMU=xlspike to support
auto-exit, project recompiling is required.

3.2.3 Makefile variables passed by make command

In Nuclei SDK build system, we exposed the following Makefile variables which can be passed via make command.

• SOC (page 26)

• BOARD (page 27)

• VARIANT (page 28)

• TOOLCHAIN (page 28)

• DOWNLOAD (page 29)

• CORE (page 30)

• ARCH_EXT (page 31)

• CPU_SERIES (page 33)

• SIMULATION (page 34)

• SEMIHOST (page 33)

• GDB_PORT (page 35)

• V (page 36)

• SILENT (page 36)

Note:

• These variables can also be used and defined in application Makefile

• If you just want to fix your running board of your application, you can just define these variables in application
Makefile, if defined, then you can simply use make clean, make upload or make debug, etc.

SOC

SOC variable is used to declare which SoC is used in application during compiling.

evalsoc is the default SoC, if no SOC passed or environment variable set, you can check default settings by run make
info, it will will show default settings without any overriding make variable.

You can easily find the supported SoCs in the <NUCLEI_SDK_ROOT>/SoC directory.

Currently we support the following SoCs, see Supported SoCs (page 27).

26 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

Table 2: Supported SoCs

SOC Reference
gd32vf103 GD32VF103 SoC (page 67)
gd32vw55x GD32VW55x SoC (page 70)
evalsoc Nuclei Eval SoC (page 65)

Note: If you are our SoC subsystem customer, in the SDK delivered to you, you can find your soc name in this
<NUCLEI_SDK_ROOT>/SoC directory, take gd32vf103 SoC as example, when SOC=gd32vf103, the SoC source
code in <NUCLEI_SDK_ROOT>/SoC/gd32vf103/Common will be used.

This documentation just document the open source version of Nuclei SDK’s supported SOC and Board.

BOARD

BOARD variable is used to declare which Board is used in application during compiling.

The BOARD variable should match the supported boards of chosen SOC. You can easily find the supported Boards in
the <NUCLEI_SDK_ROOT>/<SOC>/Board/ directory.

• Supported Boards when SOC=gd32vf103 (page 27)

• Supported Boards when SOC=evalsoc (page 27)

• Supported Boards when SOC=g32vw55x (page 27)

Currently we support the following SoCs.

Table 3: Supported Boards when SOC=gd32vf103

BOARD Reference
gd32vf103v_rvstar GD32VF103V RV-STAR Kit (page 74)
gd32vf103c_dlink GD32VF103C DLink Debugger (page 80)
gd32vf103v_eval GD32VF103V Evaluation Kit (page 76)
gd32vf103c_longan_nano Sipeed Longan Nano (page 77)
gd32vf103c_t_display Sipeed Longan Nano (page 77)
gd32vw553h_eval GD32VW553H Evaluation Kit (page 83)

Table 4: Supported Boards when SOC=evalsoc

BOARD Reference
nu-
clei_fpga_eval

Nuclei FPGA Evaluation Kit (page 71)

Table 5: Supported Boards when SOC=g32vw55x

BOARD Reference
gd32vw553h_eval GD32VW553H Evaluation Kit (page 83)

Note:

3.2. Build System based on Makefile 27

Nuclei SDK, Release 0.8.0

• If you only specify SOC variable in make command, it will use default BOARD and CORE option defined in
<NUCLEI_SDK_ROOT>/SoC/<SOC>/build.mk

• If you are our SoC subsystem customer, in the SDK delivered to you, you can check the board supported list in
<NUCLEI_SDK_ROOT>/<SOC>/Board/, take SOC=gd32vf103 BOARD=gd32vf103v_rvstar as example,
the board source code located <NUCLEI_SDK_ROOT>/gd32vf103/Board/gd32vf103v_rvstar will be used.

VARIANT

VARIANT variable is used to declare which variant of board is used in application during compiling.

It might only affect on only small piece of board, and this is SoC and Board dependent.

This variable only affect the selected board or soc, and it is target dependent.

TOOLCHAIN

Note: This variable is added in 0.5.0 release.

This variable is used to select different toolchain to compile application. Currently we support 3 toolchain in Nuclei
SDK.

• nuclei_gnu: default, it will choose nuclei gnu toolchain, distributed with Nuclei Toolchain, see Build/
toolchain/nuclei_gnu.mk.

• nuclei_llvm: supported, nuclei customized extensions not yet supported, distributed with Nuclei Toolchain, see
Build/toolchain/nuclei_llvm.mk.

• terapines: supported, see Build/toolchain/nuclei_gnu.mk, and it depends on the toolchain vendor about
the supported extensions, if you want to take a try with it, just visit https://www.terapines.com/ and request an
terapines toolchain evaluation, or you can take a try with Nuclei Studio >= 2024.06.

To learn about how to use Nuclei RISC-V Toolchain, you can refer to https://doc.nucleisys.com/nuclei_tools/

If you want to add support for your own toolchain which is based on gcc/llvm, you can refer to above toolchain support
makefile.

For nuclei_gnu/nuclei_llvm toolchain both newlib and libncrt library are supported, but nuclei_llvm toolchain multilib
selection mechanism is not as good as gnu toolchain, you need to take care of the arch isa string order, please see
riscv64-unknown-unknown-elf-clang -v output for supported multilib and its isa string order.

And IAR compiler support is also done in Nuclei SDK, you can take a try with it via ideprojects/iar35 folder provided
prebuilt ide projects.

If you want to use old Nuclei GNU Toolchain <= 2022.12 in Nuclei SDK 0.5.0, you need to pass ex-
tra COMPILE_PREFIX=riscv-nuclei-elf- when build any application, such as make CORE=n300fd
COMPILE_PREFIX=riscv-nuclei-elf- STDCLIB=libncrt_small clean all, but this is not recommended,
and will be deprecated in future any time.

From 0.8.0, COMPILE_PREFIX are supported by nuclei_gnu and nuclei_llvm, but for nuclei_llvm, llvm-ar
and llvm-size are not set by this COMPILE_PREFIX.

35 https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md

28 Chapter 3. Developer Guide

https://www.terapines.com/
https://doc.nucleisys.com/nuclei_tools/
https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md

Nuclei SDK, Release 0.8.0

DOWNLOAD

DOWNLOAD variable is used to declare the download mode of the application, currently it has these modes supported
as described in table Supported download modes (page 29)

Table 6: Supported download modes

DOWN-
LOAD

Description

ilm

Program will be downloaded into ilm/ram and
run directly in ilm/ram, program will lost when poweroff

flash

Program will be downloaded into flash, when running,
program will be copied to ilm/ram and run in ilm/ram

flashxip Program will be downloaded into flash and run directly in flash
ddr

Program will be downloaded into ddr and
run directly in ddr, program will lost when poweroff

sram

Program will be downloaded into sram and
run directly in sram, program will lost when poweroff

Note:

• This variable now target dependent, and its meaning depending on how this variable is implemented in SoC’s
build.mk

• GD32VF103 SoC (page 67) only support DOWNLOAD=flashxip

• flashxip mode in Nuclei Eval SoC (page 65) is very slow due to the CORE frequency is very slow, and flash
execution speed is slow

• ddr mode is introduced in release 0.2.5 of Nuclei SDK

• macro DOWNLOAD_MODE and DOWNLOAD_MODE_STRINGwill be defined in Makefile, eg. when DOWNLOAD=flash,
macro will be defined as -DDOWNLOAD_MODE=DOWNLOAD_MODE_FLASH, and -DDOWNLOAD_MODE_STRING=\
"flash\", the flash will be in upper case, currently DOWNLOAD_MODE_STRING macro is used in
system_<Device>.c when banner is print.

• This download mode is also used to clarify whether in the link script, your eclic vector table is placed in
.vtable_ilm or .vtable section, eg. for evalsoc, when DOWNLOAD=flash, vector table is placed in .
vtable_ilm section, and an extra macro called VECTOR_TABLE_REMAPPED will be passed in Makefile. When
VECTOR_TABLE_REMAPPED is defined, it means vector table’s LMA and VMA are different, it is remapped.

• From release 0.3.2, this DOWNLOAD_MODE should not be used, and macros DOWNLOAD_MODE_ILM,
DOWNLOAD_MODE_FLASH, DOWNLOAD_MODE_FLASHXIP and DOWNLOAD_MODE_DDR previously defined in
riscv_encoding.h now are moved to <Device.h> such as evalsoc.h, and should be deprecated in future.

3.2. Build System based on Makefile 29

Nuclei SDK, Release 0.8.0

Now we are directly using DOWNLOAD_MODE_STRING to pass the download mode string, no longer need to define
it in source code as before.

• From release 0.3.2, you can define DOWNLOAD not just the download mode list above, you can use other
download mode names specified by your customized SoC.

• For SRAM download mode, for 200/300, it don’t has DDR, so sram is a external ram outside of cpu, for 600/900,
it has DDR, so sram is the ddr ram

CORE

CORE variable is used to declare the Nuclei processor core of the application.

NOTICE: Nuclei 100 series such as N100 is not supported by normal Nuclei SDK, you need to switch to
develop_n100 branch to try it out.

Currently it has these cores supported as described in table table_dev_buildsystem_6.

When CORE is selected, the ARCH, ABI and TUNE (optional) are set, and it might affect the compiler options in
combination with ARCH_EXT (page 31) depended on the implementation of SoC build.mk.

If you are not sure about which ARCH and extension and cpu feature your Nuclei CPU has, you can run cpuinfo
(page 92) example to confirm it.

Note:

• n205/n205e/n305/n307/n307fd CORE are removed in Nuclei SDK 0.7.0

• n200e/n202/n202e CORE are added in Nuclei SDK 0.7.0

• In Nuclei SDK, this CORE variable is just a shorthand to find a suitable ARCH, ABI and TUNE for target
SoC to pass to the compiler as described in above table. So for example, CORE=n600fd equals CORE=u600fd,
CORE=n900fd equals CORE=u900fd

• Nuclei CPU product name such as N310, NA300, NA900, NI900, N308 is just a name, since the CPU itself is con-
figurable, so the final ARCH and ABI is different according to your configuration, you should find a proper base
CORE name according to your CPU RTL configuration, and if you have extra ISA not fit in this CORE name,
you can pass it via ARCH_EXT (page 31), for example, if your CPU product is NA300, and CPU_ISA after RTL
configuration is rv32imafd_zca_zcb_zcf_zcmp_zcmt_zba_zbb_zbc_zbs_zfhmin_zicond_xxldspn3x,
then you can set CORE=n300fd, ARCH_EXT can be set to empty ARCH_EXT=, or
ARCH_EXT=_zca_zcb_zcf_zcmp_zcmt_zba_zbb_zbc_zbs_zfhmin_zicond_xxldspn3x, or shorter
ARCH_EXT=_zca_zcb_zcf_zcmp_zcmt_zicond_xxldsp, but a invalid ARCH_EXT could cause a li-
brary not match issue due to toolchain can only distributed with limited multilib which can be checked via
riscv64-unknown-elf-gcc -print-multi-lib, so please take care.

• For other CPU features such as TEE, ECLIC, TIMER, CACHE, CCM, SMP and etc, you should modify the sec-
tion Processor and Core Peripheral Section in your <Device.h>, such as SoC/evalsoc/Common/Include/
evalsoc.h.

Take SOC=evalsoc as example.

• If CORE=n205 ARCH_EXT=, then ARCH=rv32imac, ABI=ilp32 TUNE=nuclei-200-series. riscv arch
related compile and link options will be passed, for this case, it will be -march=rv32imac -mabi=ilp32
-mtune=nuclei-200-series.

• If CORE=n205 ARCH_EXT=_zba_zbb_zbc_zbs, it will be -march=rv32imac_zba_zbb_zbc_zbs
-mabi=ilp32 -mtune=nuclei-200-series.

30 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

For riscv code model settings, the RISCV_CMODEL variable will be set to medlow for RV32 targets, otherwise it will be
medany.

The some SoCs, the CORE is fixed, so the ARCH and ABI will be fixed, such as gd32vf103 SoC, in build system, the
CORE is fixed to n205, and ARCH=rv32imac, ABI=ilp32.

ARCH_EXT

ARCH_EXT variable is used to select extra RISC-V arch extensions supported by Nuclei RISC-V Processor, except
the iemafdc.

Note: Nuclei Toolchain 2023.1036 now bump gcc version from gcc 10 to gcc 13, which introduced incompatiable
-march option, so ARCH_EXT usage is also incompatiable now.

About the incompatiable march option change, please see https://github.com/riscv-non-isa/
riscv-toolchain-conventions/pull/26, which is already present in latest gcc and clang release.

About latest and full version of RISC-V Ratified ISA Spec, please click latest released spec here https://github.com/
riscv/riscv-isa-manual/releases/, check the unpriv-isa-asciidoc.pdf and priv-isa-asciidoc.pdf.

About Nuclei RISC-V toolchain user guide, please check https://doc.nucleisys.com/nuclei_tools/toolchain/index.html

When using gcc 13 or clang 17 toolchain in 2023.10 or later toolchain release, you need to use it like this in 0.5.0 sdk
release or later version.

Here are several examples when using ARCH_EXT for Nuclei RISC-V Processors:

Note: This ARCH_EXT= is only used in Nuclei SDK makefile based build system, not used in Nuclei Studio IDE,
in Nuclei Studio IDE, you need to set the Other extensions in Nuclei Settings or Project Properities ->
Settings -> C/C++ Build -> Tool Settings -> Target Processor -> Other Extensions, eg. If you
pass ARCH_EXT=_zba_zbb_zbc_zbs using make, then you should set _zba_zbb_zbc_zbs in Other extensions.

• If you want to use just B 1.0 extension37, you can pass ARCH_EXT=_zba_zbb_zbc_zbs

• If you want to use just Nuclei implemented P 0.5.4 extension38 and N1/N2/N3 customized extension

– Xxldsp: means P 0.5.4 + Nuclei default enabled additional 8 expd instructions for both RV32 and RV64,
you can pass ARCH_EXT=_xxldsp

– Xxldspn1x: means Xxldsp + Nuclei N1 additional instructions for RV32 only, you can pass
ARCH_EXT=_xxldspn1x

– Xxldspn2x: means Xxldspn1x + Nuclei N2 additional instructions for RV32 only, you can pass
ARCH_EXT=_xxldspn2x

– Xxldspn3x: means Xxldspn2x + Nuclei N3 additional instructions for RV32 only, you can pass
ARCH_EXT=_xxldspn3x

• If you want to use K 1.0 extension39, you can pass ARCH_EXT=_zk_zks

• If you want to use V 1.0 extension40

– For rv32 without f/d extension, you can pass ARCH_EXT=_zve32x
36 https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10
37 https://github.com/riscv/riscv-bitmanip/releases/tag/1.0.0
38 https://github.com/riscv/riscv-p-spec/blob/33be869910077afd52653031f18a235b1f9d4442/P-ext-proposal.adoc
39 https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0
40 https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

3.2. Build System based on Makefile 31

https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10
https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/26
https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/26
https://github.com/riscv/riscv-isa-manual/releases/
https://github.com/riscv/riscv-isa-manual/releases/
https://doc.nucleisys.com/nuclei_tools/toolchain/index.html
https://github.com/riscv/riscv-bitmanip/releases/tag/1.0.0
https://github.com/riscv/riscv-p-spec/blob/33be869910077afd52653031f18a235b1f9d4442/P-ext-proposal.adoc
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

Nuclei SDK, Release 0.8.0

– For rv32 with f/d extension, you can pass ARCH_EXT=_zve32f

– For rv64 without f/d extension, you can pass ARCH_EXT=_zve64x

– For rv64 with f extension, you can pass ARCH_EXT=_zve64f

– For rv64 with fd extension, you can pass ARCH_EXT=v

• If you want to use F16(zfh/zvfh) extension, you can follow below steps

– For case without vector extension, you can add extra _zfh to ARCH_EXT, eg, ARCH_EXT=_zfh

– For case with vector extension, you can add extra _zfh_zvfh to ARCH_EXT, eg,
ARCH_EXT=_zfh_zvfh

– And the prebuilt NMSIS DSP library also provide F16 support with prebuilt F16 li-
brary, you can check library name with zfh, such as NMSIS/Library/DSP/GCC/
libnmsis_dsp_rv32imafc_zfh_zvfh_zve32f.a

– Spec about zfh extension41 and zvfh extension42

• If you want to use Zc 1.0 extension43

– You can use it together with C extension, which means it should be concat with isa string like
rv32imafd_zca_zcb_zcf_zcmp_zcmt

– In Nuclei SDK, the isa string processing is done in build system

– If you want to use with n300/n900, you can pass ARCH_EXT=_zca_zcb_zcmp_zcmt

– If you want to use with n300f/n900f, you can pass ARCH_EXT=_zca_zcb_zcf_zcmp_zcmt

– If you want to use with n300fd/n900fd, you can pass ARCH_EXT=_zca_zcb_zcf_zcmp_zcmt

– If you want to use with n300fd/n900fd without zcmp/zcmt, you can pass ARCH_EXT=_zca_zcb_zcf_zcd

– If you want to use with extra Nuclei Code Size Reduction extension called Xxlcz, you can add extra _xxlcz
in ARCH_EXT, eg. for n300, you can pass ARCH_EXT=_zca_zcb_zcmp_zcmt_xxlcz

• When using customized extensions such as Xxldsp/Xxldspn1x/Xxldspn2x/Xxldspn3x/Xxlcz,
the isa string must be placed after all _z started isa strings, here is an legal string such as
rv32imafd_zca_zcb_zcf_zcmp_zcmt_zba_zbb_zbc_zbs_zk_zks_xxlcz_xxldspn3x for rv32 with
imafd + Zc + B + K + Xxldspn3x + Xxlcz

• You need to handle this ARCH_EXT carefully, expecially using with demo_dsp demo since it will default search
library match the whole arch name but you can pass NMSIS_LIB_ARCH (page 38) variable in Makefile to choose
your desired library arch.

• LLVM Clang in Nuclei RISC-V Toolchain 2023.10 don’t support Xxldsp and Xxlcz extension now, please take
care.

• When using llvm clang compiler, the isa string order must be treat carefully, it is not handled very good when
searching different multilib.

• You can check prebuilt multilib for gcc and clang using riscv64-unknown-elf-gcc --print-multi-lib
and riscv64-unknown-elf-clang --print-multi-lib

Here below are for using gcc 10 toolchain, you can use it like this below in old nuclei sdk release before 0.5.0.

Currently, valid arch extension combination should match the order of bpv.

Here is a list of valid arch extensions:
41 https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
42 https://github.com/riscv/riscv-v-spec/releases/tag/zvfh
43 https://github.com/riscv/riscv-code-size-reduction/releases/tag/v1.0.4-3

32 Chapter 3. Developer Guide

https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://github.com/riscv/riscv-v-spec/releases/tag/zvfh
https://github.com/riscv/riscv-code-size-reduction/releases/tag/v1.0.4-3

Nuclei SDK, Release 0.8.0

• ARCH_EXT=b: RISC-V bitmanipulation extension.

• ARCH_EXT=p: RISC-V packed simd extension.

• ARCH_EXT=v: RISC-V vector extension.

• ARCH_EXT=bp: RISC-V bitmanipulation and packed simd extension.

• ARCH_EXT=pv: RISC-V packed simd and vector extension.

• ARCH_EXT=bpv: RISC-V bitmanipulation, packed simd and vector extension.

It is suggested to use this ARCH_EXT with other arch options like this, can be found in SoC/evalsoc/build.mk:

Set RISCV_ARCH and RISCV_ABI
CORE_UPPER := $(call uc, $(CORE))
CORE_ARCH_ABI := $($(CORE_UPPER)_CORE_ARCH_ABI)
RISCV_ARCH ?= $(word 1, $(CORE_ARCH_ABI))$(ARCH_EXT)
RISCV_ABI ?= $(word 2, $(CORE_ARCH_ABI))

CPU_SERIES

Note:

• This variable is used to control different compiler options for different Nuclei CPU series such as
200/300/600/900/1000.

• If you are looking for Nuclei 100 series support, please refer to develop_n100 branch of Nuclei SDK repository.

This variable will be auto set if your CORE variable match the following rules:

• 200: CORE start with 20, the CPU_SERIES will be 200.

• 300: CORE start with 30, the CPU_SERIES will be 300.

• 600: CORE start with 60, the CPU_SERIES will be 600.

• 900: CORE start with 90, the CPU_SERIES will be 900.

• 1000: CORE start with 100, the CPU_SERIES will be 1000.

• 0: CORE start with others, the CPU_SERIES will be 0.

It can also be defined in Makefile itself directly or passed via make command.

It will also define an macro called CPU_SERIES, eg. for CPU_SERIES=200, it will define macro CPU_SERIES=200.

This variable is currently used in benchmark cases, and require application Makefile changes.

SEMIHOST

If SEMIHOST=1, it means it will enable semihost support using openocd.

From 0.5.0, both newlib and libncrt support semihosting feature, and when using semihost, no need to implement the
clib stub functions, which is done by newlib or libncrt semihosting library.

And for qemu 2023.10 verison, you can also use semihosting feature, simple usage is like below for qemu:

3.2. Build System based on Makefile 33

Nuclei SDK, Release 0.8.0

cd application/baremetal/helloworld
clean project first
make SOC=evalsoc SEMIHOST=1 clean
make SOC=evalsoc SEMIHOST=1 all
run on qemu, SEMIHOST=1 is required to pass when run qemu
make SOC=evalsoc SEMIHOST=1 run_qemu

When using semihosting feature with openocd, debug message will print via openocd console.

You need to use it like this(assume you are run on evalsoc, CORE=n300):

In terminal 1, open openocd and monitor the output:

cd application/baremetal/helloworld
make SOC=evalsoc CORE=n300 run_openocd
when terminal 2 has download program and start to run, you will be able to see output␣
→˓here

In terminal 2, gdb connect to the openocd exposed gdb port and load program, and run

in normal shell terminal
cd application/baremetal/helloworld
make SOC=evalsoc CORE=n300 SEMIHOST=1 clean
make SOC=evalsoc CORE=n300 SEMIHOST=1 run_gdb

now in gdb command terminal, run the following command
monitor reset halt
load
when run continue, you will be able to see output in previous terminal 1 running␣
→˓openocd
continue

SIMULATION

If SIMULATION=1, it means the program is optimized for hardware simulation environment.

Currently if SIMULATION=1, it will pass compile option -DCFG_SIMULATION, application can use this
CFG_SIMULATION to optimize program for hardware simulation environment.

Note:

• Currently the benchmark applications in application/baremetal/benchmark used this optimization

34 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

GDB_PORT

Note:

• This new variable GDB_PORT is added in Nuclei SDK since version 0.2.4

This variable is not used usually, by default the GDB_PORT variable is 3333.

If you want to change a debug gdb port for openocd and gdb when run run_openocd and run_gdb target, you can
pass a new port such as 3344 to this variable.

For example, if you want to debug application using run_openocd and run_gdb and specify a different port other than
3333.

You can do it like this, take nuclei_fpga_eval board for example, such as port 3344:

• Open openocd server: make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=n300f GDB_PORT=3344
run_openocd

• connect gdb with openocd server: make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=n300f
GDB_PORT=3344 run_gdb

JTAGSN

Note:

• This new variable JTAGSN is added in 0.4.0 release

This variable is used specify jtag adapter serial number in openocd configuration, need to be supported in openocd
configuration file and makefile, currently evalsoc is supported. It is used by openocd adapter serial.

Assume you have a jtag adapter, serial number is FT6S9RD6, and you want to download program through this jtag to a
fpga with ux900 bitstream on it, you can do it like this.

For windows, you need to pass extra A, eg. JTAGSN=FT6S9RD6A

cd to helloworld
cd application/baremetal/helloworld
clean program
make SOC=evalsoc CORE=ux900 JTAGSN=FT6S9RD6 clean
upload program
make SOC=evalsoc CORE=ux900 JTAGSN=FT6S9RD6 upload

BANNER

If BANNER=0, when program is rebuilt, then the banner message print in console will not be print, banner print is
default enabled via NUCLEI_BANNER=1 in nuclei_sdk_hal.h.

when BANNER=0, an macro -DNUCLEI_BANNER=0 will be passed in Makefile.

The banner message looks like this:

Nuclei SDK Build Time: Jul 23 2021, 10:22:50
Download Mode: ILM
CPU Frequency 15999959 Hz

3.2. Build System based on Makefile 35

Nuclei SDK, Release 0.8.0

V

If V=1, it will display compiling message in verbose including compiling options.

By default, no compiling options will be displayed in make console message just to print less message and make the
console message cleaner. If you want to see what compiling option is used, please pass V=1 in your make command.

SILENT

If SILENT=1, it will not display any compiling messsage.

If you don’t want to see any compiling message, you can pass SILENT=1 in your make command.

3.2.4 Makefile variables used only in Application Makefile

The following variables should be used in application Makefile at your demand, e.g. application/baremetal/
demo_timer/Makefile.

• TARGET (page 36)

• NUCLEI_SDK_ROOT (page 37)

• MIDDLEWARE (page 38)

• RTOS (page 37)

• STDCLIB (page 39)

• AUTOVEC (page 37)

• NMSIS_LIB (page 38)

• NMSIS_LIB_ARCH (page 38)

• RISCV_ARCH (page 43)

• RISCV_ABI (page 43)

• RISCV_CMODEL (page 43)

• RISCV_TUNE (page 44)

• NOGC (page 44)

• RTTHREAD_MSH (page 45)

TARGET

This is a necessary variable which must be defined in application Makefile.

It is used to set the name of the application, it will affect the generated target filenames.

Warning:

• Please don’t put any spaces in TARGET variable

• The variable shouldn’t contain any space

invalid case 1
TARGET ?= hello world
invalid case 2
TARGET ?= helloworld # before this # there is a extra space

36 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

NUCLEI_SDK_ROOT

This is a necessary variable which must be defined in application Makefile.

It is used to set the path of Nuclei SDK Root, usually it should be set as relative path, but you can also set absolute path
to point to Nuclei SDK.

RTOS

RTOS variable is used to choose which RTOS will be used in this application.

You can easily find the supported RTOSes in the <NUCLEI_SDK_ROOT>/OS directory.

• If RTOS is not defined, then baremetal service will be enabled with this application. See examples in
application/baremetal.

• If RTOS is set the the following values, RTOS service will be enabled with this application.

– FreeRTOS: FreeRTOS (page 87) service will be enabled, extra macro RTOS_FREERTOS will be defined,
you can include FreeRTOS header files now, and use FreeRTOS API, for FreeRTOS application, you need
to have an FreeRTOSConfig.h header file prepared in you application. See examples in application/
freertos.

– UCOSII: UCOSII (page 88) service will be enabled, extra macro RTOS_UCOSII will be defined, you can in-
clude UCOSII header files now, and use UCOSII API, for UCOSII application, you need to have app_cfg.
h, os_cfg.h and app_hooks.c files prepared in you application. See examples in application/ucosii.

– RTThread: RT-Thread (page 88) service will be enabled, extra macro RTOS_RTTHREADwill be defined, you
can include RT-Thread header files now, and use RT-Thread API, for RTThread application, you need to
have an rtconfig.h header file prepared in you application. See examples in application/rtthread.

– ThreadX: ThreadX (page 89) service will be enabled, extra macro RTOS_THREADX will be defined, you can
include ThreadX header files now, and use ThreadX API, for ThreadX application, you need to have an
tx_user.h header file prepared in you application. See examples in application/threadx.

AUTOVEC

AUTOVEC variable is used to control whether to enable compiler auto vectorization feature.

By default, the compiler auto vectorization feature is controlled by the compiler options it passed.

When AUTOVEC=0, it will disable compiler auto vectorization feature as much as possible by passing extra compiler
options, otherwise no extra compiler options will be passed.

• nuclei_gnu: -fno-tree-vectorize -fno-tree-loop-vectorize -fno-tree-slp-vectorize

• nuclei_llvm/terapines: -fno-vectorize -fno-slp-vectorize

3.2. Build System based on Makefile 37

Nuclei SDK, Release 0.8.0

MIDDLEWARE

MIDDLEWARE variable is used to select which middlewares should be used in this application.

You can easily find the available middleware components in the <NUCLEI_SDK_ROOT>/Components directory.

• If MIDDLEWARE is not defined, not leave empty, no middlware package will be selected.

• If MIDDLEWARE is defined with more than 1 string, such as fatfs tjpgd, then these two middlewares will
be selected.

Currently we provide the following middlewares:

• profiling: This middleware is not expected to use in Makefile based build system, you need to use it in Nuclei
Studio, it is used to provide code coverage via gcov and profiling via gprof, for details, please refer to the README.
md in this folder.

NMSIS_LIB

NMSIS_LIB variable is used to select which NMSIS libraries should be used in this application.

Currently you can select the following libraries:

• nmsis_dsp: NMSIS DSP prebuilt library, see https://doc.nucleisys.com/nmsis/dsp/index.html.

• nmsis_nn: NMSIS NN prebuilt library, see https://doc.nucleisys.com/nmsis/nn/index.html.

NMSIS DSP and NN library source code can be found in https://github.com/Nuclei-Software/NMSIS.

You can select more than libraries of NMSIS. For example, if you want to use NMSIS NN library, NMSIS DSP library
is also required. so you need to set NMSIS_LIB like this NMSIS_LIB := nmsis_nn nmsis_dsp

NMSIS_LIB_ARCH

This can be used to fix issue of prebuilt library for selected arch is not found during linking.

This variable is used to select real nmsis dsp/nn library arch used, if not set, it will use RISCV_ARCH passed.

The NMSIS_LIB_ARCH need to match the prebuilt libraries located in NM-
SIS/Library/DSP/GCC and NMSIS/Library/NN/GCC, eg. NMSIS_LIB_ARCH :=
rv32imafc_zfh_zvfh_zve32f_zba_zbb_zbc_zbs_xxldspn1xwill select libnmsis_dsp_rv32imafc_zfh_zvfh_zve32f_zba_zbb_zbc_zbs_xxldspn1x.
a if NMSIS_LIB := nmsis_dsp

This is useful when you want to specify a different arch for library.

eg. When your cpu arch is rv32imafdc_zba_zbb_zbc_zbs_zk_zks_xxldspn3x, and
you want to use rv32imafdc_zba_zbb_zbc_zbs_xxldspn1x, then you can set NM-
SIS_LIB_ARCH=rv32imafdc_zba_zbb_zbc_zbs_xxldspn1x in Makefile, otherwise it will use the real cpu
arch passed by CORE and ARCH_EXT or directly via RISCV_ARCH.

38 Chapter 3. Developer Guide

https://doc.nucleisys.com/nmsis/dsp/index.html
https://doc.nucleisys.com/nmsis/nn/index.html
https://github.com/Nuclei-Software/NMSIS

Nuclei SDK, Release 0.8.0

STDCLIB

STDCLIB variable is used to select which standard c runtime library will be used. If not defined, the default value
will be newlib_nano.

In Nuclei GNU Toolchain, we destributed newlib/newlib-nano/Nuclei c runtime library, so user can select different c
runtime library according to their requirement.

Newlib is a simple ANSI C library, math library, available for both RV32 and RV64.

Nuclei C runtime library is a highly optimized c library designed for deeply embedded user cases, can provided smaller
code size and highly optimized floating point support compared to Newlib.

From 0.5.0 release, to support both gcc and clang compiler, we decided not to use --specs= option to select system
library, instead of that, we start to use --nodefaultlibs options, and link the required system libraries by the STDCLIB
variable choice, so need to link desired libraries such as:

• -lgcc: a standard library (linked by default, excluded by -nodefaultlibs) that provides internal subroutines to
overcome shortcomings of particular machines, see https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html.

• -lgcov: a library used to test coverage program, known as gcov/gprof, see https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html

• -lc/-lc_nano: newlib c library or newlib nano c library, see https://sourceware.org/newlib/docs.html

• -lm: newlib math library, see https://sourceware.org/newlib/libm.html

• -lstdc++: gnu standard c++ library, see https://gcc.gnu.org/onlinedocs/libstdc++

• -lsemihost: riscv semihosting library which implement a set of standard I/O and file I/O operations, see https:
//github.com/riscv-mcu/riscv-newlib/tree/nuclei/newlib-4.3.0/libgloss/riscv

• -lnosys: a set of stub functions which implement a set of standard I/O operations but does nothing, and when
link with it, it will throw link warning, see https://github.com/riscv-mcu/riscv-newlib/blob/nuclei/newlib-4.3.0/
libgloss/libnosys

• -lncrt_pico/-lncrt_nano/-lncrt_small/-lncrt_balanced/-lncrt_fast: Nuclei libncrt library, it
provides pico/nano/small/balanced/fast variant to provide standard c library, math library, and libgcc library fea-
tures, and need to use together with -lheapops_minimal/-lheapops_basic/-lheapops_realtime heap
operation API, and -lfileops_uart/-lfileops_semi/-lfileops_rtt file io operation API, when using
this libncrt library, please don’t link -lgcc -lc_nano/-lc -lm -lsemihost -lnosys, and it also can’t link
with -lstdc++

• Upgrading libncrt from Nuclei GNU Toolchain 2022.12 to Nuclei Toolchain 2023.10, please change it like this,
take libncrt_small as example:

– asm/c/c++ options: --specs=libncrt_small.specs -> --specs=libncrt_small.specs works for
gcc, or -isystem=/include/libncrt works for both gcc and clang

– ld options: --specs=libncrt_small.specs -> --specs=libncrt_small.specs
-lheapops_basic -lfileops_uart works for gcc, -nodefaultlibs -lncrt_small
-lheapops_basic -lfileops_uart works for both gcc and clang

– We recommend you to use later version works for both gcc and clang, -nodefaultlibs is used to exclude
startup crt, libgcc and c library in default gcc or clang, use the version specified by us to use libncrt.

3.2. Build System based on Makefile 39

https://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://sourceware.org/newlib/docs.html
https://sourceware.org/newlib/libm.html
https://gcc.gnu.org/onlinedocs/libstdc++
https://github.com/riscv-mcu/riscv-newlib/tree/nuclei/newlib-4.3.0/libgloss/riscv
https://github.com/riscv-mcu/riscv-newlib/tree/nuclei/newlib-4.3.0/libgloss/riscv
https://github.com/riscv-mcu/riscv-newlib/blob/nuclei/newlib-4.3.0/libgloss/libnosys
https://github.com/riscv-mcu/riscv-newlib/blob/nuclei/newlib-4.3.0/libgloss/libnosys

Nuclei SDK, Release 0.8.0

Table 7: Available STDCLIB choices

STDCLIB Description
newlib_full

Normal version of newlib, optimized for speed at cost of size.
It provided full feature of newlib, with file io supported.

newlib_fast Newlib nano version, with printf float and scanf float support.
newlib_small Newlib nano version, with printf float support.
newlib_nano Newlib nano version, without printf/scanf float support.
libncrt_fast Nuclei C runtime library optimized for speed, full feature
libn-
crt_balanced

Nuclei C runtime library balanced at speed and code size, full feature

libn-
crt_small

Nuclei C runtime library optimized for code size, full feature

libn-
crt_nano

Nuclei C runtime library optimized for code size, without float/double support

libn-
crt_pico

Nuclei C runtime library optimized for code size, without long/long long/float/double support

nostd no std c library will be used, and don’t search the standard system directories for header files
nospec no std c library will be used, not pass any –specs options

Note:

• For clang based compiler, if -u _print_float is not passed in linker options, it may fail during link process,
so here we pass -u _print_float for newlib_nano, then it means for nuclei_llvm and terapines toolchain,
STDCLIB=newlib_nano equals to STDCLIB=newlib_small

• Nuclei libncrt library couldn’t be used with terapines toolchain, so you can’t use any libncrt library when you are
using terapines toolchain.

• About Newlib and Newlib nano difference, please check https://github.com/riscv-collab/riscv-newlib/blob/
riscv-newlib-3.2.0/newlib/README

• About Nuclei C runtime library, it provided basic libgcc, c library and math library feature, but it didn’t provided
all the features that newlib can do, it is highly optimized for deeply embedded scenery, user no need to link with
-lm when using libncrt library when math library is needed.

• Nuclei C runtime library is only available in Nuclei GNU Toolchain released after Nov 2021, about how to use
this library, please follow doc located in gcc\share\pdf, changes need to be done in startup code, linker script,
stub code, and compiler options, you can check commit history of nuclei sdk for support of libncrt.

• Nuclei C runtime library(libncrt) only support RV32 CPU target, so you cannot use it with RV64 CPU.

• Since there are different c runtime library can be chosen now, so developer need to provide different stub functions
for different library, please check SoC/evalsoc/Common/Source/Stubs/ and SoC/evalsoc/build.mk for
example.

40 Chapter 3. Developer Guide

https://github.com/riscv-collab/riscv-newlib/blob/riscv-newlib-3.2.0/newlib/README
https://github.com/riscv-collab/riscv-newlib/blob/riscv-newlib-3.2.0/newlib/README

Nuclei SDK, Release 0.8.0

NCRTHEAP

Note:

• This variable is added in 0.5.0 release to support libncrt v3.0.0.

This variable is only valid when using libncrt c library >= v3.0.0, and you can choose different heapops when using
libncrt c library to do heap related operations such as malloc or free.

• basic: default, this is previous release of libncrt c library used one. A low-overhead best-fit heap where allocation
and deallocation have very little internal fragmentation

• realtime: A real-time heap where allocation and deallocation have O(1) performance

• minimal: An allocate-only heap where deallocation and reallocation are not implemented

For previous libncrt library, this heapops is default binded with libncrt library, so you can’t choose different heap type,
but now you can choose according to your requirements.

NCRTIO

Note:

• This variable is added in 0.5.0 release to support libncrt v3.0.0.

This variable is only valid when using libncrt c library >= v3.0.0, and you can choose different fileops when using
libncrt c library to do basic input/output operations.

• uart: default, lower level input/output via uart, developer need to implement metal_tty_putc/getc

• semi: input/output via semihosting, if you pass SEMIHOST=1 in make, it will default choose this one when
using libncrt library.

• rtt: input/output via jlink rtt, require to use JLink tool.

SMP

SMP variable is used to control smp cpu core count, valid number must > 1.

When SMP variable is defined, extra gcc options for ld is passed -Wl,--defsym=__SMP_CPU_CNT=$(SMP), and extra
c macro -DSMP_CPU_CNT=$(SMP) is defined this is passed in each SoC’s build.mk, such as SoC/evalsoc/build.mk.

When SMP variable is defined, extra openocd command set SMP $(SMP) will also be passed when run openocd
upload or create a openocd server.

For SMP application, please check application/baremetal/smphello, if you want to implement a smp application,
you need to reimplement smp_main, which all harts will run to this function instead of main, if you don’t implement
it, a weak smp_main in startup_<Device>.S will be used, and only boot hartid specified by BOOT_HARTID will
enter to main, other harts will do wfi.

3.2. Build System based on Makefile 41

Nuclei SDK, Release 0.8.0

BOOT_HARTID

Note:

• This new variable BOOT_HARTID is added in 0.4.0 release

This variable is used to control the boot hartid in a multiple core system. If SMP variable is specified, it means this
application is expected to be a smp application, otherwise it means this application is expected to be a amp application.

For amp application, only the boot hart specified by BOOT_HARTID will run, other harts will directly do wfi when
startup, but for smp application, other hartid will do normal boot code instead of code/data/bss init, and do sync harts
to make sure all harts boots.

For both amp and smp application, the program should execute on a share memory which all harts can access, not hart
private memory such as ilm/dlm.

Currently SMP and BOOT_HARTID support all require SOC support code to implement it, currently evalsoc support
it, currently qemu simulation didn’t work for SMP/AMP use case.

Here is some basic usage for SMP and BOOT_HARTID on UX900 x4, run on external ddr.

cd to helloworld
cd <Nuclei SDK>/application/baremetal/helloworld
clean program
make SOC=evalsoc CORE=ux900 clean
AMP: choose hart 1 as boot hartid, other harts spin
make SOC=evalsoc CORE=ux900 BOOT_HARTID=1 DOWNLOAD=ddr clean upload
cd <Nuclei SDK>/application/baremetal/smphello
SMP: choose hart 2 as boot hartid
make SOC=evalsoc CORE=ux900 BOOT_HARTID=2 SMP=4 DOWNLOAD=ddr clean upload

HARTID_OFS

Note:

• This new variable is added in 0.5.0 release

This variable is used to set hartid offset relative to real hart index in a complex AMP SoC system.

eg.

In a SoC system, it has 2 CPU, CPU 0 has 2 smp core, CPU 1 has 1 core, and CPU 0 hartid is 0, 1, and CPU 1 hartid
is 2, so for CPU 0, HARTID_OFS is 0, for CPU 1, HARTID_OFS is 2.

42 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

STACKSZ

STACKSZ variable is used to control the per core stack size reserved in linker script, this need to cooperate with link
script file and linker options.

In link script file, __STACK_SIZE symbol need to use PROVIDE feature of ld to define a weak version, such as
PROVIDE(__STACK_SIZE = 2K);, and gcc will pass ld options -Wl,--defsym=__STACK_SIZE=$(STACKSZ) to
overwrite the default value if STACKSZ is defined.

STACKSZ variable must be a valid value accepted by ld, such as 0x2000, 2K, 4K, 8192.

For SMP version, stack size space need to reserve STACKSZ x SMP Core Count size.

You can refer to SoC/evalsoc/Board/nuclei_fpga_eval/Source/GCC/gcc_evalsoc_ilm.ld for smp version.

HEAPSZ

HEAPSZ variable is used to control the heap size reserved in linker script, this need to cooperate with link script file
and linker options.

In link script file, __HEAP_SIZE symbol need to use PROVIDE feature of ld to define a weak version, such as
PROVIDE(__HEAP_SIZE = 2K);, and gcc will pass ld options -Wl,--defsym=__HEAP_SIZE=$(HEAPSZ) to over-
write the default value if HEAPSZ is defined.

HEAPSZ variable must be a valid value accepted by ld, such as 0x2000, 2K, 4K, 8192.

RISCV_ARCH

RISCV_ARCH variable is used to control compiler option -mcmodel=$(RISCV_ARCH).

It might override RISCV_ARCH defined in SoC build.mk, according to your build.mk implementation.

RISCV_ARCH might directly affect the gcc compiler option depended on the implementation of SoC build.mk.

Take SOC=evalsoc for example.

• CORE=n300 RISCV_ARCH=rv32imafdc_zk_zks RISCV_ABI=ilp32d ARCH_EXT=_zba_zbb_zbc_zbs,
then final compiler options will be -march=rv32imafdc_zk_zks -mabi=ilp32d
-mtune=nuclei-300-series. The ARCH_EXT is ignored.

RISCV_ABI

RISCV_ABI variable is used to control compiler option -mcmodel=$(RISCV_ABI).

It might override RISCV_ABI defined in SoC build.mk, according to your build.mk implementation.

RISCV_CMODEL

RISCV_CMODEL is used to control compiler option -mcmodel=$(RISCV_CMODEL).

For RV32, default value is medlow, otherwise medany for RV64.

You can set RISCV_CMODEL to override predefined value.

3.2. Build System based on Makefile 43

Nuclei SDK, Release 0.8.0

RISCV_TUNE

RISCV_TUNE is used to control compiler option -mtune=$(RISCV_TUNE).

It is defined in SoC build.mk, you can override it if your implementation allow it.

APP_COMMON_FLAGS

Note:

• Added in 0.4.0 release.

This variable is used to define app common compiler flags to all c/asm/cpp compiler. You can pass it via make command
to define extra flags to compile application.

APP_ASMFLAGS

This variable is similiar to APP_COMMON_FLAGS but used to pass extra app asm flags.

APP_CFLAGS

This variable is similiar to APP_COMMON_FLAGS but used to pass extra app c flags.

APP_CXXFLAGS

This variable is similiar to APP_COMMON_FLAGS but used to pass extra app cxx flags.

APP_LDFLAGS

This variable is similiar to APP_COMMON_FLAGS but used to pass extra app linker flags.

NOGC

NOGC variable is used to control whether to enable gc sections to reduce program code size or not, by default GC is
enabled to reduce code size.

When GC is enabled, these options will be added:

• Adding to compiler options: -ffunction-sections -fdata-sections

• Adding to linker options: -Wl,--gc-sections -Wl,--check-sections

If you want to enable this GC feature, you can set NOGC=0 (default), GC feature will remove sections for you, but
sometimes it might remove sections that are useful, e.g. For Nuclei SDK test cases, we use ctest framework, and we
need to set NOGC=1 to disable GC feature.

When NOGC=0``(default), extra compile options ``-ffunction-sections -fdata-sections, and ex-
tra link options -Wl,--gc-sections -Wl,--check-sections will be passed.

44 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

RTTHREAD_MSH

RTTHREAD_MSH variable is valid only when RTOS is set to RTThread.

When RTTHREAD_MSH is set to 1:

• The RTThread MSH component source code will be included

• The MSH thread will be enabled in the background

• Currently the msh getchar implementation is using a weak function implemented in rt_hw_console_getchar
in OS/RTTThread/libcpu/risc-v/nuclei/cpuport.c

3.2.5 Build Related Makefile variables used only in Application Makefile

If you want to specify additional compiler flags, please follow this guidance to modify your application Makefile.

Nuclei SDK build system defined the following variables to control the build options or flags.

• INCDIRS (page 46)

• C_INCDIRS (page 46)

• CXX_INCDIRS (page 46)

• ASM_INCDIRS (page 46)

• SRCDIRS (page 46)

• C_SRCDIRS (page 46)

• CXX_SRCDIRS (page 47)

• ASM_SRCDIRS (page 47)

• C_SRCS (page 47)

• CXX_SRCS (page 47)

• ASM_SRCS (page 47)

• EXCLUDE_SRCS (page 48)

• COMMON_FLAGS (page 48)

• CFLAGS (page 48)

• CXXFLAGS (page 48)

• ASMFLAGS (page 48)

• LDFLAGS (page 48)

• LDLIBS (page 49)

• LIBDIRS (page 49)

• LINKER_SCRIPT (page 49)

3.2. Build System based on Makefile 45

Nuclei SDK, Release 0.8.0

INCDIRS

This INCDIRS is used to pass C/CPP/ASM include directories.

e.g. To include current directory . and inc for C/CPP/ASM

INCDIRS = . inc

C_INCDIRS

This C_INCDIRS is used to pass C only include directories.

e.g. To include current directory . and cinc for C only

C_INCDIRS = . cinc

CXX_INCDIRS

This CXX_INCDIRS is used to pass CPP only include directories.

e.g. To include current directory . and cppinc for CPP only

CXX_INCDIRS = . cppinc

ASM_INCDIRS

This ASM_INCDIRS is used to pass ASM only include directories.

e.g. To include current directory . and asminc for ASM only

ASM_INCDIRS = . asminc

SRCDIRS

This SRCDIRS is used to set the source directories used to search the C/CPP/ASM source code files, it will not do
recursively.

e.g. To search C/CPP/ASM source files in directory . and src

SRCDIRS = . src

C_SRCDIRS

This C_SRCDIRS is used to set the source directories used to search the C only source code files(*.c, *.C), it will
not do recursively.

e.g. To search C only source files in directory . and csrc

C_SRCDIRS = . csrc

46 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

CXX_SRCDIRS

This CXX_SRCDIRS is used to set the source directories used to search the CPP only source code files(*.cpp,
*.CPP), it will not do recursively.

e.g. To search CPP only source files in directory . and cppsrc

CXX_SRCDIRS = . cppsrc

ASM_SRCDIRS

This ASM_SRCDIRS is used to set the source directories used to search the ASM only source code files(*.s, *.S),
it will not do recursively.

e.g. To search ASM only source files in directory . and asmsrc

ASM_SRCDIRS = . asmsrc

C_SRCS

If you just want to include a few of C source files in directories, you can use this C_SRCS variable, makefile wildcard
pattern supported.

e.g. To include main.c and src/hello.c

C_SRCS = main.c src/hello.c

CXX_SRCS

If you just want to include a few of CPP source files in directories, you can use this CXX_SRCS variable, makefile
wildcard pattern supported.

e.g. To include main.cpp and src/hello.cpp

CXX_SRCS = main.cpp src/hello.cpp

ASM_SRCS

If you just want to include a few of ASM source files in directories, you can use this ASM_SRCS variable, makefile
wildcard pattern supported.

e.g. To include asm.s and src/test.s

ASM_SRCS = asm.s src/test.s

3.2. Build System based on Makefile 47

Nuclei SDK, Release 0.8.0

EXCLUDE_SRCS

If you just want to exclude a few of c/asm/cpp source files in directories, you can use this EXCLUDE_SRCS variable,
makefile wildcard pattern supported.

e.g. To exclude test2.c and src/test3.c

EXCLUDE_SRCS = test2.c src/test3.c

COMMON_FLAGS

This COMMON_FLAGS variable is used to define common compiler flags to all c/asm/cpp compiler.

For example, you can add a newline COMMON_FLAGS += -O3 -funroll-loops -fpeel-loops in your application
Makefile and these options will be passed to C/ASM/CPP compiler.

This variable should be defined in Makefile.

CFLAGS

Different to COMMON_FLAGS, this CFLAGS variable is used to define common compiler flags to C compiler only.

For example, you can add a newline CFLAGS += -O3 -funroll-loops -fpeel-loops in your application Makefile
and these options will be passed to C compiler.

CXXFLAGS

Different to COMMON_FLAGS, this CXXFLAGS variable is used to define common compiler flags to cpp compiler
only.

For example, you can add a newline CXXFLAGS += -O3 -funroll-loops -fpeel-loops in your application Make-
file and these options will be passed to cpp compiler.

ASMFLAGS

Different to COMMON_FLAGS, this ASMFLAGS variable is used to define common compiler flags to asm compiler
only.

For example, you can add a newline ASMFLAGS += -O3 -funroll-loops -fpeel-loops in your application Make-
file and these options will be passed to asm compiler.

LDFLAGS

This LDFLAGS is used to pass extra linker flags, for example, if you want to use standard system libraries when
linking, you can add a newline LDFLAGS += -nodefaultlibs in you application Makefile.

If you want to link with other libraries, please use LDLIBS and LIBDIRS variables.

48 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

LDLIBS

This LDLIBS variable is library flags or names given to compilers when they are supposed to invoke the linker.

Non-library linker flags, such as -L, should go in the LIBDIRS or LDFLAGS variable.

LIBDIRS

This LIBDIRS variable is used to store the library directories, which could be used together with LDLIBS.

For example, if you have a library located in $(NUCLEI_SDK_ROOT)/Library/DSP/libnmsis_dsp_rv32imac.a,
and you want to link it, then you can define these lines:

LDLIBS = -lnmsis_dsp_rv32imac
LIBDIRS = $(NUCLEI_SDK_ROOT)/Library/DSP

LINKER_SCRIPT

This LINKER_SCRIPT variable could be used to set the link script of the application.

By default, there is no need to set this variable, since the build system will define a default linker script for application
according to the build configuration. If you want to define your own linker script, you can set this variable.

For example, LINKER_SCRIPT := gcc.ld.

3.3 Application Development

3.3.1 Overview

Here will describe how to develop an Nuclei SDK application.

To develop a Nuclei SDK application from scratch, you can do the following steps:

1. Create a directory to place your application code.

2. Create Makefile in the new created directory, the minimal Makefile should look like this

1 TARGET = your_target_name
2

3 NUCLEI_SDK_ROOT = path/to/your_nuclei_sdk_root
4

5 SRCDIRS = .
6

7 INCDIRS = .
8

9 include $(NUCLEI_SDK_ROOT)/Build/Makefile.base

3. Copy or create your application code in new created directory.

Note:

• If you just want to SoC related resource, you can include header file nuclei_sdk_soc.h in your application
code.

3.3. Application Development 49

Nuclei SDK, Release 0.8.0

• If you just want to SoC and Board related resource, you can include header file nuclei_sdk_hal.h in
your application code.

• For simplity, we recomment you to use nuclei_sdk_hal.h header file

4. Follow Build System based on Makefile (page 19) to change your application Makefile.

3.3.2 Add Extra Source Code

If you want to add extra source code, you can use these makefile variables:

To add all the source code in directories, recursive search is not supported.

• SRCDIRS (page 46): Add C/CPP/ASM source code located in the directories defined by this variable.

• C_SRCDIRS (page 46): Add C only source code located in the directories defined by this variable.

• CXX_SRCDIRS (page 47): Add CPP only source code located in the directories defined by this variable.

• ASM_SRCDIRS (page 47): Add ASM only source code located in the directories defined by this variable.

To add only selected c/cxx/asm source files

• C_SRCS (page 47): Add C only source code files defined by this variable.

• CXX_SRCS (page 47): Add CPP only source code files defined by this variable.

• ASM_SRCS (page 47): Add ASM only source code files defined by this variable.

To exclude some source files

• EXCLUDE_SRCS (page 48): Exclude source files defined by this variable.

3.3.3 Add Extra Include Directory

If you want to add extra include directories, you can use these makefile variables:

• INCDIRS (page 46): Include the directories defined by this variable for C/ASM/CPP code during compiling.

• C_INCDIRS (page 46): Include the directories defined by this variable for C only code during compiling.

• CXX_INCDIRS (page 46): Include the directories defined by this variable for CPP only code during compiling.

• ASM_INCDIRS (page 46): Include the directories defined by this variable for ASM only code during compiling.

3.3.4 Add Extra Build Options

If you want to add extra build options, you can use these makefile variables:

• COMMON_FLAGS (page 48): This will add compiling flags for C/CPP/ASM source code.

• CFLAGS (page 48): This will add compiling flags for C source code.

• CXXFLAGS (page 48): This will add compiling flags for CPP source code.

• ASMFLAGS (page 48): This will add compiling flags for ASM source code.

• LDFLAGS (page 48): This will add linker flags when linking.

• LDLIBS (page 49): This will add extra libraries need to be linked.

• LIBDIRS (page 49): This will add extra library directories to be searched by linker.

50 Chapter 3. Developer Guide

Nuclei SDK, Release 0.8.0

3.3.5 Optimize For Code Size

If you want to optimize your application for code size, you set COMMON_FLAGS in your application Makefile like this:

COMMON_FLAGS := -Os

If you want to optimize code size even more, you use this link time optimization(LTO) as below:

COMMON_FLAGS := -Os -flto

see demo_eclic (page 94) for example usage of optimize for code size.

For more details about gcc optimization, please refer to Options That Control Optimization in GCC44.

3.3.6 Change Link Script

If you want to change the default link script defined by your make configuration(SOC, BOARD, DOWNLOAD). You
can use LINKER_SCRIPT (page 49) variable to set your linker script.

The default linker script used for different boards can be found in Board (page 71).

3.3.7 Set Default Make Options

Set Default Global Make Options For Nuclei SDK

If you want to change the global Make options for the Nuclei SDK, you can add the Makefile.global (page 24).

Set Local Make Options For Your Application

If you want to change the application level Make options, you can add the Makefile.local (page 25).

3.4 Build Nuclei SDK Documentation

In Nuclei SDK, we use Sphinx and restructured text as documentation tool.

Here we only provide steps to build sphinx documentation in Linux environment.

3.4.1 Install Tools

To build this the documentation, you need to have these tools installed.

• Python3

• Python Pip tool

Then you can use the pip tool to install extra python packages required to build the documentation.

pip install -r doc/requirements.txt

44 https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Optimize-Options.html#Optimize-Options

3.4. Build Nuclei SDK Documentation 51

https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Optimize-Options.html#Optimize-Options

Nuclei SDK, Release 0.8.0

3.4.2 Build The Documentation

Then you can build the documentation using the following command:

cd to document folder
cd doc
Build Sphinx documentation
make html

The documentation will be generated in doc/build/html folder.

You can open the doc/build/html/index.html in your browser to view the details.

52 Chapter 3. Developer Guide

CHAPTER

FOUR

CONTRIBUTING

Contributing to Nuclei SDK project is always welcome.

You can always do a lot of things to help Nuclei SDK project improve and grow stronger.

• Port your Nuclei SoC into Nuclei SDK (page 53)

• Submit your issue (page 57)

• Submit your pull request (page 57)

4.1 Port your Nuclei SoC into Nuclei SDK

Note: If you just want to do quick porting based on evalsoc implementation of Nuclei SDK to get quick ramp up, you
can refer to Quick Porting to you SoC based on Evalsoc in Nuclei SDK45

If you want to port you Nuclei Processor Core based Board to Nuclei SDK, you need to follow these steps:

And the best example is our evalsoc support, although it may contains many unused features you may not want to use,
but it is our evaluation SoC and will supply to provide best support for Nuclei RISC-V CPU features, if you are already
using it, please keep in update of the evalsoc support changes in each release, you can track it by diff each release
changes, and please also remember Nuclei SDK release may also bump with NMSIS release.

Assume your SoC name is ncstar, based on Nuclei core n300f (page 30), and RISCV_ARCH is rv32imafc,
RISCV_ABI is ilp32f, and you made a new board called ncstar_eval, and this SoC only support flashxip down-
load (page 29) mode.

Make sure the SoC name and Board name used in this Nuclei SDK is all in lowercase.

1. Create a folder named ncstar under SoC directory.

• Create folder named Board and Common under ncstar

• Create directory structure under ncstar/Common like below:

<ncstar/Common>
Include

peripheral_or_device_headers.h
......
ncstar.h
nuclei_sdk_soc.h
system_ncstar.h

(continues on next page)

45 https://doc.nucleisys.com/nuclei_studio_supply/28-quick_porting_from_evalsoc_to_customsoc_based_on_Nuclei_SDK/

53

https://doc.nucleisys.com/nuclei_studio_supply/28-quick_porting_from_evalsoc_to_customsoc_based_on_Nuclei_SDK/

Nuclei SDK, Release 0.8.0

(continued from previous page)

Source
Drivers

peripheral_or_device_sources.c
......

GCC
intexc_ncstar.S
startup_ncstar.S

Stubs
newlib
libncrt

ncstar_soc.c
system_ncstar.c

Note:

– The directory structure is based on the NMSIS device template, please refer to https://doc.nucleisys.
com/nmsis/core/core_templates.html

– The folder names must be exactly the same as the directory structure showed

– peripheral_or_device_sources.c means the SoC peripheral driver source code files, such as uart, gpio,
i2c, spi driver sources, usually get from the SoC firmware library, it should be placed in Drivers folder.

– peripheral_or_device_headers.h means the SoC peripheral driver header files, such as uart, gpio, i2c,
spi driver headers, usually get from the SoC firmware library, it should be placed in Include folder.

– The Stubs folder contains the stub code files for newlib c library and nuclei c runtime library porting
code, take SoC/evalsoc/Common/Stubs as reference.

– The GCC folder contains startup and exeception/interrupt assemble code, if your board share the same
linker script files, you can also put link script files here, the linker script files name rules can refer to
previously supported evalsoc SoC.

– If you want to do IAR compiler support, you also need to implement IAR related stuff, which is located
in folder called IAR.

– The nuclei_sdk_soc.h file is very important, it is a Nuclei SoC Header file used by common application
which can run accoss different SoC, it should include the SoC device header file ncstar.h

• Create directory structure under ncstar/Board like below:

<ncstar/Board>
ncstar_eval

Include
ncstar_eval.h
nuclei_sdk_hal.h

openocd_ncstar.cfg
Source

GCC
gcc_ncstar_flashxip.ld

ncstar_eval.c

Note:

54 Chapter 4. Contributing

https://doc.nucleisys.com/nmsis/core/core_templates.html
https://doc.nucleisys.com/nmsis/core/core_templates.html

Nuclei SDK, Release 0.8.0

– The ncstar_eval is the board folder name, if you have a new board, you can create a new folder in the
same level

– Include folder contains the board related header files

– Source folder contains the board related source files

– GCC folder is optional, if your linker script for the board is different to the SoC, you need to put your
linker script here

– openocd_ncstar.cfg file is the board related openocd debug configuration file

– ncstar_eval.h file contains board related definition or APIs and also include the SoC header file, you
can refer to previously supported board such as nuclei_fpga_eval

– nuclei_sdk_hal.h is very important, it includes the ncstar_eval.h header file. This file is used in
application as entry header file to access board and SoC resources.

2. Create Makefile related to ncstar in Nuclei SDK build system (page 19)

• Create SoC/ncstar/build.mk, the file content should be like this:

Put your SoC build configurations below

BOARD ?= ncstar_eval

override DOWNLOAD and CORE variable for NCSTAR SoC
even though it was set with a command argument
override CORE := n300f
override DOWNLOAD := flashxip

NUCLEI_SDK_SOC_BOARD := $(NUCLEI_SDK_SOC)/Board/$(BOARD)
NUCLEI_SDK_SOC_COMMON := $(NUCLEI_SDK_SOC)/Common

#no ilm on NCSTAR SoC
LINKER_SCRIPT ?= $(NUCLEI_SDK_SOC_BOARD)/Source/GCC/gcc_ncstar_flashxip.ld
OPENOCD_CFG ?= $(NUCLEI_SDK_SOC_BOARD)/openocd_ncstar.cfg

RISCV_ARCH ?= rv32imafc
RISCV_ABI ?= ilp32f

Put your Source code Management configurations below

INCDIRS += $(NUCLEI_SDK_SOC_COMMON)/Include

C_SRCDIRS += $(NUCLEI_SDK_SOC_COMMON)/Source \
$(NUCLEI_SDK_SOC_COMMON)/Source/Drivers

ifneq ($(findstring libncrt,$(STDCLIB)),)
C_SRCDIRS += $(NUCLEI_SDK_SOC_COMMON)/Source/Stubs/libncrt
else ifneq ($(findstring newlib,$(STDCLIB)),)
C_SRCDIRS += $(NUCLEI_SDK_SOC_COMMON)/Source/Stubs/newlib
else
no stubs will be used
endif

(continues on next page)

4.1. Port your Nuclei SoC into Nuclei SDK 55

Nuclei SDK, Release 0.8.0

(continued from previous page)

ASM_SRCS += $(NUCLEI_SDK_SOC_COMMON)/Source/GCC/startup_ncstar.S \
$(NUCLEI_SDK_SOC_COMMON)/Source/GCC/intexc_ncstar.S

Add extra board related source files and header files
VALID_NUCLEI_SDK_SOC_BOARD := $(wildcard $(NUCLEI_SDK_SOC_BOARD))
ifneq ($(VALID_NUCLEI_SDK_SOC_BOARD),)
INCDIRS += $(VALID_NUCLEI_SDK_SOC_BOARD)/Include
C_SRCDIRS += $(VALID_NUCLEI_SDK_SOC_BOARD)/Source
endif

• If you need to place vector table in flash device, and copy it to ilm when startup, such as using
DOWNLOAD=flash mode, then you need to define extra VECTOR_TABLE_REMAPPED macro in this build.
mk, just take SoC/evalsoc/build.mk as reference.

omit some code above
Add extra cflags for SoC related
ifeq ($(DOWNLOAD), flash)
COMMON_FLAGS += -DVECTOR_TABLE_REMAPPED
endif
omit some code below
RISCV_ARCH ?= rv32imafc

3. If you have setup the source code and build system correctly, then you can test your SoC using the common
applications, e.g.

Test helloworld application for ncstar_eval board
cd to helloworld application directory
cd application/baremetal/helloworld
clean and build helloworld application for ncstar_eval board
make SOC=ncstar BOARD=ncstar_eval clean all
connect your board to PC and install jtag driver, open UART terminal
set baudrate to 115200bps and then upload the built application
to the ncstar_eval board using openocd, and you can check the
run messsage in UART terminal
make SOC=ncstar BOARD=ncstar_eval upload

Note:

• You can always refer to previously supported SoCs for reference, such as the evalsoc and gd32vf103 SoC, we
suggest you follow the evalsoc implementation, since it is well maintained to support latest nuclei riscv cpu
feature.

• The evalsoc SoC is a FPGA based evaluation platform, it have ilm and dlm, so it support many download
modes (page 29)

• The gd32vf103 SoC is a real silicon chip, it only have RAM and onchip flash, it only support FlashXIP mode.

• The nuclei_sdk_soc.h must be created in SoC include directory, it must include the device header file <device>.h
and SoC firmware library header files.

• The nuclei_sdk_hal.h must be created in Board include directory, it must include nuclei_sdk_soc.h and board
related header files.

56 Chapter 4. Contributing

Nuclei SDK, Release 0.8.0

4.2 Submit your issue

If you find any issue related to Nuclei SDK project, you can open an issue in https://github.com/Nuclei-Software/
nuclei-sdk/issues

4.3 Submit your pull request

If you want to contribute your code to Nuclei SDK project, you can open an pull request in https://github.com/
Nuclei-Software/nuclei-sdk/pulls

Regarding to code style, please refer to Code Style (page 19).

4.4 Git commit guide

If you want to contribute your code, make sure you follow the guidance of git commit, see here https://chris.beams.io/
posts/git-commit/ for details

• Use the present tense (“Add feature” not “Added feature”)

• Use the imperative mood (“Move cursor to. . . ” not “Moves cursor to. . . ”)

• Limit the first line to 80 characters or less

• Refer github issues and pull requests liberally using #

• Write the commit message with an category name and colon:

– soc: changes related to soc

– board: changes related to board support packages

– nmsis: changes related to NMSIS

– build: changes releated to build system

– library: changes related to libraries

– rtos: changes related to rtoses

– test: changes related to test cases

– doc: changes related to documentation

– ci: changes related to ci environment

– application: changes related to applications

– misc: changes not categorized

– env: changes related to environment

4.2. Submit your issue 57

https://github.com/Nuclei-Software/nuclei-sdk/issues
https://github.com/Nuclei-Software/nuclei-sdk/issues
https://github.com/Nuclei-Software/nuclei-sdk/pulls
https://github.com/Nuclei-Software/nuclei-sdk/pulls
https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/

Nuclei SDK, Release 0.8.0

58 Chapter 4. Contributing

CHAPTER

FIVE

DESIGN AND ARCHITECTURE

5.1 Overview

Nuclei SDK is developed based on NMSIS, all the SoCs supported in it are following the NMSIS-Core Device Tem-
plates Guidance46.

So this Nuclei SDK can be treated as a software guide for how to use NMSIS.

The build system we use in Nuclei SDK is Makefile, it support both Windows and Linux, and when we develop
Nuclei SDK build system, we keep it simple, so it make developer can easily port this Nuclei SDK software code to
other IDEs.

Click Overview (page 1) to learn more about the Nuclei SDK project overview.

For example, we have ported Nuclei SDK to use Segger embedded Studio, IAR Workbench and PlatformIO.

5.1.1 Directory Structure

To learn deeper about Nuclei SDK project, the directory structure is a good start point.

Below, we will describe our design about the Nuclei SDK directory structure:

Here is the directory structure for this Nuclei SDK.

$NUCLEI_SDK_ROOT
application

baremetal
freertos
ucosii
rtthread

Build
gmsl
toolchain
Makefile.base
Makefile.conf
Makefile.core
Makefile.components
Makefile.files
Makefile.global
Makefile.misc
Makefile.rtos

(continues on next page)

46 https://doc.nucleisys.com/nmsis/core/core_templates.html

59

https://doc.nucleisys.com/nmsis/core/core_templates.html
https://doc.nucleisys.com/nmsis/core/core_templates.html

Nuclei SDK, Release 0.8.0

(continued from previous page)

Makefile.rules
Makefile.soc

doc
build
source
Makefile
requirements.txt

NMSIS
Core
DSP
NN
Library

OS
FreeRTOS
UCOSII
RTThread

SoC
gd32vf103
evalsoc

test
core
ctest.h
LICENSE
README.md

LICENSE
Makefile
NMSIS_VERSION
package.json
SConscript
README.md
setup.bat
setup.sh

• application

This directory contains all the application softwares for this Nuclei SDK.

The application code can be divided into mainly 4 parts, which are:

– Baremetal applications, which will provide baremetal applications without any OS usage, these applica-
tions will be placed in application/baremetal/ folder.

– FreeRTOS applications, which will provide FreeRTOS applications using FreeRTOS RTOS, placed in
application/freertos/ folder.

– UCOSII applications, which will provide UCOSII applications using UCOSII RTOS, placed in applica-
tion/ucosii/ folder.

– RTThread applications, which will provide RT-Thread applications using RT-Thread RTOS, placed in
application/rtthread/ folder.

• SoC

This directory contains all the supported SoCs for this Nuclei SDK, the directory name for SoC and its boards
should always in lower case.

60 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

Here we mainly support Nuclei processor cores running in Nuclei FPGA evaluation board, the support package
placed in SoC/evalsoc/.

In each SoC’s include directory, nuclei_sdk_soc.h must be provided, and include the soc header file, for example,
SoC/evalsoc/Common/Include/nuclei_sdk_soc.h.

In each SoC Board’s include directory, nuclei_sdk_hal.h must be provided, and include the board header file, for
example, SoC/evalsoc/Board/nuclei_fpga_eval/Include/nuclei_sdk_hal.h.

• Build

This directory contains the key part of the build system based on Makefile for Nuclei SDK.

• NMSIS

This directory contains the NMSIS header files, which is widely used in this Nuclei SDK, you can check the
NMSIS_VERSION file to know the current NMSIS version used in Nuclei-SDK.

We will also sync the changes in NMSIS project47 when it provided a new release.

• OS

This directory provided three RTOS package we suppported which are FreeRTOS, UCOSII and RT-Thread.

• LICENSE

Nuclei SDK license file.

• NMSIS_VERSION

NMSIS Version file. It will show current NMSIS version used in Nuclei SDK.

• package.json

PlatformIO package json file for Nuclei SDK, used in Nuclei Platform for PlatformIO48.

• SConscript

RT-Thread package scons build script, used in RT-Thread package development49.

• Makefile

An external Makefile just for build, run, debug application without cd to any corresponding application directory,
such as application/baremetal/helloworld/.

• setup.sh

Nuclei SDK environment setup script for Linux. You need to create your own setup_config.sh.

you can export this variable to Nuclei Studio's toolchain folder
NUCLEI_TOOL_ROOT=/path/to/your_tool_root

In the $NUCLEI_TOOL_ROOT for Linux, you need to have Nuclei RISC-V GNU GCC toolchain and
OpenOCD installed as below.

$NUCLEI_TOOL_ROOT
gcc

bin
include
lib
libexec

(continues on next page)

47 https://github.com/Nuclei-Software/NMSIS
48 https://platformio.org/platforms/nuclei/
49 https://www.rt-thread.org/document/site/development-guide/package/package/

5.1. Overview 61

https://github.com/Nuclei-Software/NMSIS
https://platformio.org/platforms/nuclei/
https://www.rt-thread.org/document/site/development-guide/package/package/

Nuclei SDK, Release 0.8.0

(continued from previous page)

riscv64-unknown-elf
share

openocd
bin
contrib
distro-info
OpenULINK
scripts
share

• setup.bat

Nuclei SDK environment setup bat script for Windows. You need to create your own setup_config.bat.

set NUCLEI_TOOL_ROOT=\path\to\your_tool_root

In the %NUCLEI_TOOL_ROOT% for Windows, you need to have Nuclei RISC-V GNU GCC toolchain,
necessary Windows build tools and OpenOCD installed as below.

%NUCLEI_TOOL_ROOT%
build-tools

bin
gnu-mcu-eclipse
licenses

gcc
bin
include
lib
libexec
riscv64-unknown-elf
share

openocd
bin
contrib
distro-info
OpenULINK
scripts
share

5.1.2 Project Components

This Nuclei SDK project components is list as below:

• Nuclei Processor (page 63): How Nuclei Processor Core is used in Nuclei SDK

• SoC (page 65): How Nuclei processor code based SoC device is supported in Nuclei SDK

• Board (page 71): How Nuclei based SoC’s Board is supported in Nuclei SDK

• Peripheral (page 85): How to use the peripheral driver in Nuclei SDK

• RTOS (page 86): What RTOSes are supported in Nuclei SDK

• Application (page 90): How to use pre-built applications in Nuclei SDK

62 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

5.2 Nuclei Processor

Nuclei processor core are following and compatible to RISC-V standard architecture, but there might be some additions
and enhancements to the original standard spec.

Click Nuclei Spec50 to learn more about Nuclei RISC-V Instruction Set Architecture.

5.2.1 Introduction

Nuclei provides the following RISC-V IP Products51 for AIoT:

• N100 series: Designed for mixed digital and analog, IoT or other extremely low-power and small area scenarios,
which is the perfect replacement of traditional 8051 cores, you need to use it with Nuclei N100 SDK52 .

• N200 series: Designed for ultra-low power consumption and embedded scenarios, perfectly replaces the arm
Cortex-M series cores.

• N300 series: Designed for extreme energy efficiency ratio, requiring DSP and FPU features, as IoT and industrial
control scenarios.

• 600 series and 900 series: Fully support Linux for high-performance edge computing and smart AIoT.

• 1000 series: The UX1000 Series have three different variants: UX1030, UX1040 and UX1060. UX1030 is a
3-wide processor with good performance and smaller power & area; UX1040 is a 4-wide processor with better
performance and balanced power & area; UX1060 is a 6-wide processor with even higher performance targeting
high-end applications.

Note:

• N100 series is not supported by NMSIS and Nuclei SDK

5.2.2 NMSIS in Nuclei SDK

This Nuclei SDK is built based on the NMSIS53 framework, user can access NMSIS Core API54, NMSIS DSP API55

and NMSIS NN API56 provided by NMSIS57.

These NMSIS APIs are mainly responsible for accessing Nuclei RISC-V Processor Core.

The prebuilt NMSIS-DSP and NMSIS-NN libraries are also provided in Nuclei SDK, see NMSIS/Library/ folder.

Note:

• To support RT-Thread in Nuclei-SDK, we have to modify the startup_<device>.S, to use macro RTOS_RTTHREAD
defined when using RT-Thread as below:

50 https://doc.nucleisys.com/nuclei_spec/
51 https://nucleisys.com/product.php
52 https://doc.nucleisys.com/nuclei_n100_sdk
53 https://github.com/Nuclei-Software/NMSIS
54 https://doc.nucleisys.com/nmsis/core/api/index.html
55 https://doc.nucleisys.com/nmsis/dsp/api/index.html
56 https://doc.nucleisys.com/nmsis/nn/api/index.html
57 https://github.com/Nuclei-Software/NMSIS

5.2. Nuclei Processor 63

https://doc.nucleisys.com/nuclei_spec/
https://nucleisys.com/product.php
https://doc.nucleisys.com/nuclei_n100_sdk
https://github.com/Nuclei-Software/NMSIS
https://doc.nucleisys.com/nmsis/core/api/index.html
https://doc.nucleisys.com/nmsis/dsp/api/index.html
https://doc.nucleisys.com/nmsis/nn/api/index.html
https://github.com/Nuclei-Software/NMSIS

Nuclei SDK, Release 0.8.0

#ifdef RTOS_RTTHREAD
// Call entry function when using RT-Thread
call entry

#else
call main

#endif

• In order to support RT-Thread initialization macros INIT_XXX_EXPORT, we also need to modify the link script
files, add lines after `` (.rodata .rodata.)`` as below:

. = ALIGN(4);
*(.rdata)
(.rodata .rodata.)
/* RT-Thread added lines begin */
/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))
__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
/* RT-Thread added lines end */
(.gnu.linkonce.r.)

5.2.3 SoC Resource

Regarding the SoC Resource exclude the Nuclei RISC-V Processor Core, it mainly consists of different peripherals
such UART, GPIO, I2C, SPI, CAN, PWM, DMA, USB and etc.

The APIs to access to the SoC resources are usually defined by the SoC Firmware Library Package provided by SoC
Vendor.

In Nuclei SDK, currently we just required developer to provide the following common resources:

• A UART used to implement several stub functions for printf function

– When using newlib library, please check stub functions list in SoC/evalsoc/Common/Stubs/newlib

– When using libncrt library, please check stub functions list in SoC/evalsoc/Common/Stubs/libncrt

– When using iar dlib library, please check stub functions list in SoC/evalsoc/Common/Stubs/iardlib

• Common initialization code defined in System_<Device>.c/h in each SoC support package in Nuclei SDK.

• Before enter to main function, these resources must be initialized:

– The UART used to print must be initialized as 115200 bps, 8bit data, none parity check, 1
stop bit

64 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

– ECLIC MTH set to 0 using ECLIC_SetMth, means don’t mask any interrupt

– ECLIC NLBits set to __ECLIC_INTCTLBITS, means all the nlbits are for level

– Global interrupt is disabled

Note:

• If you want to learn more about SoC, please click SoC (page 65)

• If you want to learn more about Board, please click Board (page 71)

• If you want to learn more about Peripheral, please click Peripheral (page 85)

5.3 SoC

5.3.1 Nuclei Demo SoC

Note: Since Hummingbird is already taken by the opensource Hummingbird E203 SoC, we just rename Hummingbird
SoC in Nuclei SDK to Nuclei Demo SoC to make it more clear. For newer version of Nuclei CPU IP from 2022.07,
which might has iregion feature, please use Eval SoC instead of Demo SoC.

Nuclei Demo SoC support in Nuclei SDK is removed in 0.5.0 release, please use Nuclei Eval SoC (page 65) now.

5.3.2 Nuclei Eval SoC

Note: Nuclei CPU IP now with iregion feature will use totally new evaluation SoC, this SoC is different from previous
Demo SoC, please take care.

Nuclei DemoSoC is now removed in 0.5.0 release, and please use evalsoc now.

Nuclei Eval SoC is an evaluation FPGA SoC from Nuclei for customer to evaluate Nuclei RISC-V Process Core, and
it is a successor for Demo SoC.

Overview

To easy user to evaluate Nuclei Processor Core, the prototype SoC (called Nuclei Eval SoC) is provided for evaluation
purpose.

This prototype SoC includes:

• Processor Core, it can be Nuclei N class, NX class or UX class Processor Core.

• On-Chip SRAMs for instruction and data.

• The SoC buses.

• The basic peripherals, such as UART, SPI etc.

5.3. SoC 65

Nuclei SDK, Release 0.8.0

With this prototype SoC, user can run simulations, map it into the FPGA board, and run with real embedded application
examples.

If you want to learn more about this evaluation SoC, please get the <Nuclei_Eval_SoC_Intro.pdf> from Nuclei58.

Supported Boards

In Nuclei SDK, we support the following boards based on Nuclei Evaluation SoC, see:

• Nuclei FPGA Evaluation Kit (page 71), default Board when this SoC selected.

Usage

Note: To ensure compatibility when using Nuclei EvalSoC(FPGA), please verify with our Application Engineer (AE)
the specific CPU configuration to confirm if the EvalSoC’s CPU possesses the features you intend to test. You can
utilize the cpuinfo (page 92) application to determine the available CPU features on your system and cross-reference
this information with the Nuclei ISA specifications.

Note: In latest CPU RTL generation flow, it will also generate an Nuclei SDK to match CPU and EvalSoC RTL
configuration, please use the generated Nuclei SDK to evaluate your CPU and EvalSoC feature.

The generated Nuclei SDK by nuclei_gen will do the following tasks:

• Generate SoC/evalsoc/cpufeature.mk: which will define CORE, ARCH_EXT, QEMU_SOCCFG or
SIMULATION default value.

• Generate SoC/evalsoc/Common/Include/cpufeature.h: which will define current cpu feature macros.

• Generate SoC/evalsoc/evalsoc.json: which will define current qemu soc configuration according to the
evalsoc and cpu configuration.

• Generate SoC/evalsoc/Board/nuclei_fpga_eval/Source/GCC/evalsoc.memory: which will define the
ilm/dlm/flash/ddr/sram base address and size.

• Modify SoC/evalsoc/Board/nuclei_fpga_eval/openocd_evalsoc.cfg: Mainly change
workmem_base/workmem_size/flashxip_base/xipnuspi_base to adapt the evalsoc configuration.

If you want to use the generated Nuclei SDK by nuclei_gen In Nuclei Studio IDE, you need to zip it first, and then
import it using RV-Tools -> NPK Package Management in Nuclei Studio IDE’s menu, and when creating a IDE
project using New Nuclei RISC-V C/C++ Project, please select the correct sdk and version which you can check it
in the <SDK>/npk.yml file, and in the project example configuration wizard window, you should configure the Nuclei
RISC-V Core and ARCH Extensions, Nuclei Cache Extensions according to your configured CPU ISA, and CPU
feature defined in generated cpufeature.h.

WARNING: Currently you still need to modify IAR linker script(*.icf) by yourself, it is not automatically modified.

If you want to use this Nuclei Evaluation SoC in Nuclei SDK, you need to set the SOC (page 26) Makefile variable to
evalsoc.

Note: IAR support is done by prebuilt IAR projects not through Makefile based build system, please check https:
//github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md for detailed usage.

58 https://nucleisys.com/

66 Chapter 5. Design and Architecture

https://nucleisys.com/
https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md
https://github.com/Nuclei-Software/nuclei-sdk/blob/master/ideprojects/iar/README.md

Nuclei SDK, Release 0.8.0

Extra make variables supported only in this SoC and used internally only by Nuclei, not designed for widely
used:

• RUNMODE: it is used internally by Nuclei, used to control ILM/DLM/ICache/DCache enable or dis-
able via make variable, please check SoC/evalsoc/runmode.mk for details. It is not functional by
default, unless you set a non-empty variable to this RUNMODE variable, it can be used with different
ILM_EN/DLM_EN/IC_EN/DC_EN/CCM_EN.

• L2_EN: it is used internally by Nuclei, used to control L2 cache enable or disable, introduced in 0.6.0
release.

• LDSPEC_EN: it is used internally by Nuclei, used to control load speculative enable or disable, introduced
in 0.6.0 release.

• BPU_EN: it is used internally by Nuclei, used to control branch prediction unit enable or disable, introduced
in 0.6.0 release.

• ECC_EN: it is used internally by Nuclei, used to control (ilm/dlm/L1 I/Dcache)ecc unit enable or disable,
introduced in 0.7.0 release.

• XLCFG_xxx make variables such as XLCFG_CIDU, XLCFG_CCM, XLCFG_TEE and XL-
CFG_SMPU which are used to overwrite default macros defined in cpufeature.h which will affect
XXX_PRESENT macros in evalsoc.h, introduced in 0.7.0 release.

• CODESIZE: it is used to control whether remove all template routine code for interrupt and exception and
banner print code to measure basic code size requirement for evalsoc when CODESIZE=1

• SYSCLK: it is used together with CODESIZE=1 to overwrite default SYSTEM_CLOCK macro value for dif-
ferent bitstream, eg. SYSCLK=50000000 CODESIZE=1, it will set default SYSTEM_CLOCK to 50000000.

• QEMU_MC_EXTOPT is used to pass extra options to Nuclei Qemu -M machine options for evalsoc,
please dont pass any extra , to this make variable, you can pass such as QEMU_MC_EXTOPT=debug=1 but
not pass QEMU_MC_EXTOPT=,debug=1

• QEMU_CPU_EXTOPT is used to pass extra options to Nuclei Qemu -cpu cpu options for evalsoc, please
dont pass any extra , to this make variable, you can pass such as QEMU_CPU_EXTOPT=vlen=512 but not
pass QEMU_CPU_EXTOPT=,vlen=512

Choose SoC to be evalsoc
the following command will build application
using default evalsoc SoC based board
defined in Build System and application Makefile
make SOC=evalsoc info # you can check current working SDK configuration information
make SOC=evalsoc clean
make SOC=evalsoc all

5.3.3 GD32VF103 SoC

GD32VF103 SoC is the first general RISC-V MCU from GigaDevice Semiconductor59 in the world which is based on
Nuclei RISC-V Process Core.

If you want to learn more about it, please click https://www.gigadevice.com/products/microcontrollers/gd32/risc-v/
59 https://www.gigadevice.com/

5.3. SoC 67

https://www.gigadevice.com/
https://www.gigadevice.com/products/microcontrollers/gd32/risc-v/

Nuclei SDK, Release 0.8.0

Overview

The GD32VF103 device is a 32-bit general-purpose micro controller based on the RISC-V core with best ratio in terms
of processing power, reduced power consumption and peripheral set.

The RISC-V processor core is tightly coupled with an Enhancement Core-Local Interrupt Controller(ECLIC), SysTick
timer and advanced debug support.

The GD32VF103 device incorporates the RISC-V 32-bit processor core operating at 108MHz frequency with Flash
accesses zero wait states to obtain maximum efficiency.

It provides up to 128KB on-chip Flash memory and 32KB SRAM memory.

An extensive range of enhanced I/Os and peripherals connect to two APB buses.

The devices offer up to two 12-bit ADCs, up to two 12-bit DACs, up to four general 16-bit timers, two basic timers plus
a PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three
USARTs, two UARTs, two I2Ss, two CANs, an USBFS.

The SoC diagram can be checked as below GD32VF103 SoC Diagram (page 69)

Supported Boards

In Nuclei SDK, we support the following four boards based on GD32VF103 SoC, see:

• GD32VF103V RV-STAR Kit (page 74), default Board when this SoC selected.

• GD32VF103V Evaluation Kit (page 76)

• Sipeed Longan Nano (page 77)

• TTGO T-Display-GD32 (page 82)

Usage

If you want to use this GD32VF103 SoC in Nuclei SDK, you need to set the SOC (page 26) Makefile variable to
gd32vf103.

Extra make variables supported only in this SoC:

• SYSCLK: 108000000 by default, means 108MHz system clock will be selected during SystemInit func-
tion, it will define macro SYSTEM_CLOCK=$(SYSCLK) which is used in system_gd32vf103.c, such as
SYSTEM_CLOCK=108000000.

• CLKSRC: hxtal by default, available choices are hxtal and irc8m, means select to use HXTAL PLL or
IRC8M PLL, it will define macro CLOCK_USING_$(CLKSRC), such as CLOCK_USING_HXTAL

• USB_DRIVER: none usb driver is selected by default. You can choose device or host or both to select
device, host or both driver source code, and in application code, user need to provide usb host or device
initialization code and header files.

Choose SoC to be gd32vf103
the following command will build application
using default gd32vf103 SoC based board
defined in Build System and application Makefile
make SOC=gd32vf103 clean
make SOC=gd32vf103 all

Note:

68 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

Fig. 1: GD32VF103 SoC Diagram

5.3. SoC 69

Nuclei SDK, Release 0.8.0

• Since this gd32vf103 SoC is a real chip, it is using Nuclei RISC-V N205 core, so the CORE is fixed to n205

• USB_DRV_SUPPORT make variable is no longer available, please use USB_DRIVER variable to select dif-
ferent usb driver.

• You need to provide usb_conf.h/usbd_conf.h/usbh_conf.h file in you application code, if you want to use
the usb driver of gd32vf103, see https://github.com/Nuclei-Software/nuclei-sdk/pull/54

5.3.4 GD32VW55x SoC

GD32VW55x SoC is an RISC-V WiFi/BLE MCU from GigaDevice Semiconductor60 in the world which is based on
Nuclei RISC-V N300 Processor.

If you want to learn more about it, please click https://www.gigadevice.com/about/news-and-event/news/
gigadevice-launches-gd32vw553-series

Overview

The new GD32VW553 series integrates up to 4MB Flash, 320KB SRAM, and 32KB configurable Instruction Cache
(I-Cache) to greatly improve CPU processing efficiency. The GD32VW553, delivering excellent wireless performance,
is also equipped with rich universal wired interfaces, including three U(S)ART, two I2C, one SPI, one four-wire QSPI,
and up to 29 programmable GPIO pins. Its built-in components include two 32-bit general-purpose timers, two 16-bit
general-purpose timers, four 16-bit basic timers, one PWM advanced timer, and one 12-bit ADC. The power supply
voltage ranges from 1.8 V to 3.6 V and it offers high temperature up to 105℃ to meet the application scenarios such
as industrial control interconnection, lighting equipment, and socket panels.

Supported Boards

In Nuclei SDK, we support the following four boards based on GD32VW55x SoC, see:

• GD32VW553H Evaluation Kit (page 83), default Board when this SoC selected.

Usage

If you want to use this GD32VW55x SoC in Nuclei SDK, you need to set the SOC (page 26) Makefile variable to
gd32vw55x.

Extra make variables supported only in this SoC(see SoC/gd32vw55x/build.mk):

• SYSCLK: 160000000 by default, means 160MHz system clock will be selected during SystemInit func-
tion, it will define macro SYSTEM_CLOCK=$(SYSCLK) which is used in system_gd32vw55x.c.

• CLKSRC: empty by default, available choices are hxtal and irc16m, means select to use HXTAL PLL
or IRC16M PLL, it will define macro CLOCK_USING_$(CLKSRC), such as CLOCK_USING_HXTAL

Choose SoC to be gd32vw55x
the following command will build application
using default gd32vw55x SoC based board
defined in Build System and application Makefile
make SOC=gd32vw55x clean
make SOC=gd32vw55x all

60 https://www.gigadevice.com/

70 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/pull/54
https://www.gigadevice.com/
https://www.gigadevice.com/about/news-and-event/news/gigadevice-launches-gd32vw553-series
https://www.gigadevice.com/about/news-and-event/news/gigadevice-launches-gd32vw553-series

Nuclei SDK, Release 0.8.0

Note:

• Since this gd32vw55x SoC is a real chip, it is using Nuclei RISC-V N300 core, so the CORE is fixed to n300fd

5.4 Board

5.4.1 Nuclei FPGA Evaluation Kit

Overview

Nuclei have customized different FPGA evaluation boards (called Nuclei FPGA Evaluation Kit), which can be pro-
grammed with Nuclei Demo/Eval SoC FPGA bitstream.

• Nuclei FPGA Evaluation Kit, 100T version

This 100T version is a very early version which widely used since 2019, it has a Xilinx XC7A100T FPGA chip
on the board.

Fig. 2: Nuclei FPGA Evaluation Kit, 100T Version

• Nuclei FPGA Evaluation Kit, DDR 200T version

This DDR 200T version is a latest version which provided since 2020.09, it has a Xilinx XC7A200T FPGA chip
on the board, and the onboard DDR could be connected to Nuclei RISC-V Core.

This board is a choice to replace the 100T version, and it could be use to evaluate any Nuclei RISC-V core.

We also use this version of board to evaluate Nuclei UX class core which can run Linux on it, it you want to run
Linux on this board, please refer to Nuclei Linux SDK61.

5.4. Board 71

https://github.com/Nuclei-Software/nuclei-linux-sdk

Nuclei SDK, Release 0.8.0

Fig. 3: Nuclei FPGA Evaluation Kit, DDR 200T Version

• Nuclei FPGA Evaluation Kit, MCU 200T version

This MCU 200T version is a latest version which provided since 2020.09, it has a Xilinx XC7A200T FPGA chip
on the board, but there is no DDR chip on the board.

This board is a choice to replace the 100T version, and it could be use to evaluate any Nuclei RISC-V core with
don’t use DDR.

There are also other fpga board we supported, such as KU060 and VCU118 board, please contact with our sales for
details.

Click Nuclei FPGA Evaluation Kit Board Documents62 to access the documents of these boards.

Setup

Follow the guide in Nuclei FPGA Evaluation Kit Board Documents63 to setup the board, make sure the following items
are set correctly:

• Use Nuclei FPGA debugger to connect the MCU-JTAG on board to your PC in order to download and debug
programs and monitor the UART message.

• Power on the board using USB doggle(for 100T) or DC 12V Power(for MCU 200T or DDR 200T).

• The Nuclei FPGA SoC FPGA bitstream with Nuclei RISC-V evaluation core inside is programmed to FPGA on
this board.

• Following steps in debugger kit manual64 to setup JTAG drivers for your development environment
61 https://github.com/Nuclei-Software/nuclei-linux-sdk
62 https://nucleisys.com/developboard.php
63 https://nucleisys.com/developboard.php
64 https://www.nucleisys.com/theme/package/Nuclei_FPGA_DebugKit_Intro.pdf

72 Chapter 5. Design and Architecture

https://nucleisys.com/developboard.php
https://nucleisys.com/developboard.php
https://www.nucleisys.com/theme/package/Nuclei_FPGA_DebugKit_Intro.pdf

Nuclei SDK, Release 0.8.0

Fig. 4: Nuclei FPGA Evaluation Kit, MCU 200T Version

How to use

For Nuclei FPGA Evaluation board:

• evalsoc can run on this fpga board, please choose the correct SoC, demosoc support is removed in 0.5.0 release.

• DOWNLOAD support all the modes list in DOWNLOAD (page 29)

– You can find default used linker scripts for different download modes in SoC/evalsoc/Board/
nuclei_fpga_eval/Source/GCC/.

∗ gcc_evalsoc_ilm.ld: Linker script file for DOWNLOAD=ilm

∗ gcc_evalsoc_flash.ld: Linker script file for DOWNLOAD=flash

∗ gcc_evalsoc_flashxip.ld: Linker script file for DOWNLOAD=flashxip

∗ gcc_evalsoc_sram.ld: Linker script file for DOWNLOAD=sram

∗ gcc_evalsoc_ddr.ld: Linker script file for DOWNLOAD=ddr. Caution: This download mode can be
only used when DDR is connect to Nuclei RISC-V Core

– If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

– If you want to change the base address or size of ILM, DLM, RAM, ROM or Flash of linker script file, you
can adapt the Memory Section65 in the linker script file it according to your SoC memory information.

• CORE support all the cores list in CORE (page 30)

• Its openocd configuration file can be found in SoC/evalsoc/Board/nuclei_fpga_eval/
openocd_evalsoc.cfg

To run this application in Nuclei FPGA Evaluation board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

65 https://sourceware.org/binutils/docs/ld/MEMORY.html

5.4. Board 73

https://sourceware.org/binutils/docs/ld/MEMORY.html

Nuclei SDK, Release 0.8.0

For evalsoc
Clean the application with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f clean
Build the application with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f all
Upload the application using openocd and gdb with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f upload
Debug the application using openocd and gdb with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f debug
For evalsoc
Clean the application with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f clean
Upload the application using openocd and gdb with DOWNLOAD=ilm CORE=n300f
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300f upload

If you want to try other toolchain, such as nuclei llvm or terapines zcc, you can pass an extra TOOLCHAIN (page 28)
make variable.

Note:

• demosoc support is removed, please use evalsoc now.

• You can change the value passed to CORE according to the Nuclei Demo SoC Evaluation Core the Nuclei FPGA
SoC you have.

• You can also change the value passed to DOWNLOAD to run program in different modes.

• The FreeRTOS and UCOSII demos maybe not working in flashxip download mode in Nuclei FPGA board
due to program running in Flash is really too slow. If you want to try these demos, please use ilm or flash
download mode.

5.4.2 GD32VF103V RV-STAR Kit

Overview

This GD32VF103V RV-STAR Kit is an arduino compatiable board from Nuclei using GD32VF103VBT6 as main
MCU.

Click GD32VF103V RV-STAR Development Kit66 to access the documents of this board.

Click online RV-STAR Development Board Overview67 to get basic information of this board.
66 https://nucleisys.com/developboard.php
67 https://doc.nucleisys.com/nuclei_board_labs/hw/hw.html#rv-star

74 Chapter 5. Design and Architecture

https://nucleisys.com/developboard.php
https://doc.nucleisys.com/nuclei_board_labs/hw/hw.html#rv-star

Nuclei SDK, Release 0.8.0

Fig. 5: GD32VF103V RV-STAR Board

Setup

Follow the guide in GD32VF103V RV-STAR Development Kit68 to setup the board, make sure the following items are
set correctly:

• Connect the USB Type-C port on board to your PC in order to download and debug programs and monitor the
UART message.

• Following steps in RV-STAR user manual69 to setup JTAG drivers for your development environment

How to use

For GD32VF103V RV-STAR board, the DOWNLOAD and CORE variables are fixed to flashxip and n205.

• You can find its linker script in SoC/gd32vf103/Board/gd32vf103v_rvstar/Source/GCC/

– gcc_gd32vf103_flashxip.ld: Linker script file for DOWNLOAD=flashxip

• If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• You can find its openocd configuration file in SoC/gd32vf103/Board/gd32vf103v_rvstar/
openocd_gd32vf103.cfg

To run this application in GD32VF103V RV-STAR board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

68 https://nucleisys.com/developboard.php
69 https://doc.nucleisys.com/nuclei_board_labs/hw/hw.html#on-board-debugger-driver

5.4. Board 75

https://nucleisys.com/developboard.php
https://doc.nucleisys.com/nuclei_board_labs/hw/hw.html#on-board-debugger-driver

Nuclei SDK, Release 0.8.0

Clean the application
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar clean
Build the application
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar all
Upload the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar upload
Debug the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103v_rvstar debug

5.4.3 GD32VF103V Evaluation Kit

Overview

This GD32VF103V Evaluation Kit is an evaluation board from gigadevice using GD32VF103VBT6 as main MCU.

Fig. 6: GD32VF103V-EVAL Board

If you want to learn about this board, please click GD32VF103V EVAL Board Documents70.

Setup

Follow the guide in GD32VF103V EVAL Board Documents71 to setup the board, make sure the following items are
set correctly:

• Connect the GD-Link on board to your PC in order to download and debug programs.

• Select the correct boot mode and then power on, the LEDPWR will turn on, which indicates the power supply is
ready

• Connect the COM0 to your PC

• Following steps in board user manual to setup JTAG drivers for your development environment
70 https://github.com/riscv-mcu/GD32VF103_Demo_Suites/tree/master/GD32VF103V_EVAL_Demo_Suites/Docs
71 https://github.com/riscv-mcu/GD32VF103_Demo_Suites/tree/master/GD32VF103V_EVAL_Demo_Suites/Docs

76 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/GD32VF103_Demo_Suites/tree/master/GD32VF103V_EVAL_Demo_Suites/Docs
https://github.com/riscv-mcu/GD32VF103_Demo_Suites/tree/master/GD32VF103V_EVAL_Demo_Suites/Docs

Nuclei SDK, Release 0.8.0

How to use

For GD32VF103V-EVAL board, the DOWNLOAD and CORE variables are fixed to flashxip and n205.

• You can find its linker script in SoC/gd32vf103/Board/gd32vf103v_eval/Source/GCC/

– gcc_gd32vf103_flashxip.ld: Linker script file for DOWNLOAD=flashxip

• If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• You can find its openocd configuration file in SoC/gd32vf103/Board/gd32vf103v_eval/
openocd_gd32vf103.cfg

To run this application in GD32VF103V-EVAL board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

Clean the application
make SOC=gd32vf103 BOARD=gd32vf103v_eval clean
Build the application
make SOC=gd32vf103 BOARD=gd32vf103v_eval all
Upload the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103v_eval upload
Debug the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103v_eval debug

5.4.4 Sipeed Longan Nano

Overview

The Sipeed Longan Nano is a board made by Sipeed using a GD32VF103CBT6 as main MCU. Is is similar to the well
known STM32-based Blue Pill board.

Fig. 7: Sipeed Longan Nano Board.

5.4. Board 77

Nuclei SDK, Release 0.8.0

Versions

There are two versions of this board available.

• GD32VF103CBT6 with 128k Flash / 32k RAM

• GD32VF103C8T6 with 64k Flash / 20k RAM. This is sometimes called the lite version.

If you want to buy one, carefully take a look at the description because sometimes they are offered with the
GD32VF103CB controller, but they only contain the GD32VF103C8 controller.

Pinout

The pinout of Sipeed Logan Nano is shown in the following picture

Fig. 8: Sipeed Longan Nano Pinout.

Schematic

Resources

Click Sipeed Longan Nano Documentation72 to get all information about this board from Sipeed website.
72 https://longan.sipeed.com/en/

78 Chapter 5. Design and Architecture

https://longan.sipeed.com/en/

Nuclei SDK, Release 0.8.0

Fig. 9: Sipeed Longan Nano Schematic.

Setup

To setup the board, make sure the following items are set correctly:

• Power up the board by either the USB-C port or the by the debugger.

• The default serial port is USART0, whitch is also available at the debug header. See Sipeed Longan Nano Pinout.
(page 78)

How to use

For Sipeed Longan Nano board, the DOWNLOAD and CORE variables are fixed to flashxip and n205. The
VARIANT variable can be used for choosing a board variant.

• You can find its linker scripts in SoC/gd32vf103/Board/gd32vf103c_longan_nano/Source/GCC/

– gcc_gd32vf103xb_flashxip.ld: Linker script file for DOWNLOAD=flashxip and 128k flash, this is the
default.

– gcc_gd32vf103x8_flashxip.ld: Linker script file for DOWNLOAD=flashxip and 64k flash, the lite
version, you can pass extra VARIANT=lite via make command to select this linker script.

• If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• You can find its openocd configuration file in SoC/gd32vf103/Board/gd32vf103c_longan_nano/
openocd_gd32vf103.cfg

To run this application in Sipeed Longan Nano board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

5.4. Board 79

Nuclei SDK, Release 0.8.0

Clean the application
make SOC=gd32vf103 BOARD=gd32vf103c_longan_nano clean
Build the application
make SOC=gd32vf103 BOARD=gd32vf103c_longan_nano all
Upload the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_longan_nano upload
Debug the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_longan_nano debug

To build for the lite variant you also need to set the VARIANT variable.

Build the application
make SOC=gd32vf103 BOARD=gd32vf103c_longan_nano VARIANT=lite all

Extensions

There are three extensions on the board:

• On the back of the circuit board there is a socket for a micro SD card.

– The SD-card is connected to SPI1.

• On the front there is a socket for a small LCD which is offered by some sellers.

– The LCD is connected to SPI0.

– The controller on the LCD is similar to Sitronix’ ST7735.

• One RGB-LED

– The red LED is controlled via PC13. This LED can be addressed by LED3 or LEDR.

– The green LED is controlled via PA1. This LED can be addressed by LED1 or LEDG.

– The blue LED is controlled via PA2 This LED can be addressed by LED2 or LEDB.

There are two buttons on the board. One is the reset button and the other is to activate the internal bootloader. Unfor-
tunately, none of these buttons can be used as user inputs.

5.4.5 GD32VF103C DLink Debugger

Overview

This GD32VF103C DLink Debugger is used to debug Nuclei RISC-V CPU from Nuclei using GD32VF103CVBT6
as main MCU.

Click https://github.com/nuclei-Software/nuclei-dlink to learn more about Nuclei DLink project.

80 Chapter 5. Design and Architecture

https://github.com/nuclei-Software/nuclei-dlink

Nuclei SDK, Release 0.8.0

Fig. 10: GD32VF103C DLink Debugger Board

Setup

How to use

For GD32VF103C DLink Debugger board, the DOWNLOAD and CORE variables are fixed to flashxip and n205.

• You can find its linker script in SoC/gd32vf103/Board/gd32vf103c_dlink/Source/GCC/

– gcc_gd32vf103_flashxip.ld: Linker script file for DOWNLOAD=flashxip

• If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• You can find its openocd configuration file in SoC/gd32vf103/Board/gd32vf103c_dlink/
openocd_gd32vf103.cfg

To run this application in GD32VF103C DLink Debugger board in Nuclei SDK, you just need to use this SOC and
BOARD variables.

Clean the application
make SOC=gd32vf103 BOARD=gd32vf103c_dlink clean
Build the application
make SOC=gd32vf103 BOARD=gd32vf103c_dlink all
Upload the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_dlink upload
Debug the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_dlink debug

5.4. Board 81

Nuclei SDK, Release 0.8.0

5.4.6 TTGO T-Display-GD32

Overview

The TTGO T-Display-GD3273 is a minimal board from LilyGo using the GD32VF103CBT6 as main MCU.

Fig. 11: TTGO T-Display-GD32 Board

Setup

Wire your JTAG debugger as following. Below table assumes the Sipeed USB-JTAG/TTL RISC-V Debugger. With
other brands the pin namings should be the same. You also need to power up the board via USB.

Debugger TTGO T-Display-GD32
GND GND
RXD PA9
TXD PA10
NC
GND GND (optional)
TDI PA15
RST RST
TMS PA13
TDO PB3
TCK PA14

73 http://www.lilygo.cn/prod_view.aspx?TypeId=50033&Id=1251&FId=t3:50033:3

82 Chapter 5. Design and Architecture

http://www.lilygo.cn/prod_view.aspx?TypeId=50033&Id=1251&FId=t3:50033:3

Nuclei SDK, Release 0.8.0

How to use

For TTGO T-Display-GD32 board, the DOWNLOAD and CORE variables are fixed to flashxip and n205.

• You can find its linker script in SoC/gd32vf103/Board/gd32vf103c_t_display/Source/GCC/
gcc_gd32vf103_flashxip.ld

• If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• You can find its openocd configuration file in SoC/gd32vf103/Board/gd32vf103c_t_display/
openocd_gd32vf103.cfg

To run this application in TTGO T-Display-GD32 board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

Clean the application
make SOC=gd32vf103 BOARD=gd32vf103c_t_display clean
Build the application
make SOC=gd32vf103 BOARD=gd32vf103c_t_display all
Upload the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_t_display upload
Debug the application using openocd and gdb
make SOC=gd32vf103 BOARD=gd32vf103c_t_display debug

5.4.7 GD32VW553H Evaluation Kit

Overview

This GD32VW553H Evaluation Kit is an evaluation board from gigadevice using GD32VW553HM as main MCU.

If you want to learn about this board, please click GD32VW553H EVAL Board Documents74.

Setup

Follow the guide in GD32VW553H EVAL Board Documents75 to setup the board, make sure the following items are
set correctly:

• Connect the GD-Link on board to your PC in order to download and debug programs.

• Connect the USART to your PC as UART communication.

• Following steps in board user manual to setup JTAG drivers for your development environment
74 https://www.gd32mcu.com/en/download/8?kw=GD32VW5
75 https://www.gd32mcu.com/en/download/8?kw=GD32VW5

5.4. Board 83

https://www.gd32mcu.com/en/download/8?kw=GD32VW5
https://www.gd32mcu.com/en/download/8?kw=GD32VW5

Nuclei SDK, Release 0.8.0

Fig. 12: GD32VW553H EVAL Board

84 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

How to use

For GD32VW553H-EVAL board:

• DOWNLOAD: flashxip by default, and you can also choose sram download mode

– You can find its linker script in SoC/gd32vw55x/Board/gd32vw553h_eval/Source/GCC/

– gcc_gd32vw55x_flashxip.ld: Linker script file for DOWNLOAD=flashxip

– gcc_gd32vw55x_sram.ld: Linker script file for DOWNLOAD=sram

– If you want to specify your own modified linker script, you can follow steps described in Change Link Script
(page 51)

• CORE: n300fd by default, this by default is rv32imafdc arch, but you can also choose n300 or n300f

• ARCH_EXT: _zba_zbb_zbc_zbs_xxldspn1x by default, you can pass less extensions such as
_zba_zbb_zbc_zbs

• You can find its openocd configuration file in SoC/gd32vw55x/Board/gd32vw553h_eval/
openocd_gd32vw55x.cfg

To run this application in GD32VW553H-EVAL board in Nuclei SDK, you just need to use this SOC and BOARD
variables.

Clean the application
make SOC=gd32vw55x BOARD=gd32vw553h_eval clean
Build the application
make SOC=gd32vw55x BOARD=gd32vw553h_eval all
Upload the application using openocd and gdb
make SOC=gd32vw55x BOARD=gd32vw553h_eval upload
Debug the application using openocd and gdb
make SOC=gd32vw55x BOARD=gd32vw553h_eval debug

5.5 Peripheral

5.5.1 Overview

Regarding the peripheral support(such as UART, GPIO, SPI, I2C and etc.) in Nuclei SDK, we didn’t define a device or
peripheral layer for different SoCs, so the peripheral drivers are directly tighted with each SoC, and if developer want
to use the drivers, they can directly use the driver API defined in each SoC.

Considering this peripheral driver difference in each SoC, if you want to write portable code in Nuclei SDK, you can
use include the nuclei_sdk_soc.h, then you can write application which only use the resources of Nuclei Core.

If you want to use all the board resources, you can include the nuclei_sdk_hal.h, then you can write application for
your own board, but the application can only run in the board you provided.

5.5. Peripheral 85

Nuclei SDK, Release 0.8.0

5.5.2 Usage

If you want to learn about what peripheral driver you can use, you can check the nuclei_sdk_soc.h of each SoC,
and nuclei_sdk_hal.h of each board.

For SoC firmware library APIs:

• You can find the GD32VF103 SoC firmware library APIs in SoC/gd32vf103/Common/Include

• You can find the GD32VW55x SoC firmware library APIs in SoC/gd32vw55x/Common/Include

• You can find the Nuclei Eval SoC firmware library APIs in SoC/evalsoc/Common/Include

If you just want to use SoC firmware library API, you just need to include nuclei_sdk_soc.h, then you can use the
all the APIs in that SoC include directory.

Note: For GD32VF103 SoC, if you want to use the USB driver API, then you need to add USB_DRIVER = both in
your application to enable both host and device driver.

For Board related APIs:

• You can find the GD32VF103 EVAL Board related APIs in SoC/gd32vf103/Board/gd32vf103v_eval/
Include

• You can find the GD32VF103 RV-STAR Board related APIs in SoC/gd32vf103/Board/
gd32vf103v_rvstar/Include

• You can find the Sipeed Longan Nano Board related APIs in SoC/gd32vf103/Board/
gd32vf103c_longan_nano/Include

• You can find the Nuclei FPGA Evaluation Board related APIs in SoC/evalsoc/Board/
nuclei_fpga_eval/Include

• You can find the TTGO T-Display-GD32 related APIs in SoC/gd32vf103/Board/
gd32vf103c_t_display/Include

If you just want to use all the APIs of Board and SoC, you just need to include nuclei_sdk_hal.h, then you can use
the all the APIs in that Board and SoC include directory.

5.6 RTOS

5.6.1 Overview

In Nuclei SDK, we have support four most-used RTOSes in the world, FreeRTOS, UCOSII, ThreadX and RT-Thread
from China.

Our RTOS port require Nuclei ECLIC interrupt controller, please make sure your Nuclei CPU is configured with ECLIC
present.

If you want to use RTOS in your application, you can choose one of the supported RTOSes.

Note: When you want to develop RTOS application in Nuclei SDK, please don’t reconfigure SysTimer and SysTimer
Software Interrupt, since it is already used by RTOS portable code.

86 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

5.6.2 FreeRTOS

FreeRTOS76 is a market-leading real-time operating system (RTOS) for microcontrollers and small microprocessors.

In our FreeRTOS portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

These two interrupts are kept as lowest level, and SysTimer Interrupt is initialized as non-vector interrupt, and
SysTimer Software Interrupt is initialized as vector interrupt and interrupt handler implemented using asm code.

In our FreeRTOS porting, we also allow FreeRTOS configuration variable
configMAX_SYSCALL_INTERRUPT_PRIORITY which can be find in https://www.freertos.org/a00110.html.

The configMAX_SYSCALL_INTERRUPT_PRIORITY should be set to be a absolute interrupt level range from 1 to
(2^lvlbits-1) while lvlbits = min(nlbits, CLICINTCTLBITS).

If you set configMAX_SYSCALL_INTERRUPT_PRIORITY to value above the accepted value range, it will use the
max value.

If you want to learn about how to use FreeRTOS APIs, you need to go to its website to learn the FreeRTOS documen-
tation in its website.

In Nuclei SDK, if you want to use FreeRTOS in your application, you need to add RTOS = FreeRTOS in your appli-
cation Makefile.

And in your application code, you need to do the following things:

• Add FreeRTOS configuration file -> FreeRTOSConfig.h

• Include FreeRTOS header files

Now we also support FreeRTOS SMP version, about SMP version, please refer to https://www.freertos.org/
symmetric-multiprocessing-introduction.html , and we also provide freertos smpdemo example in our SDK, you can
find it in application\freertos\smpdemo.

To use FreeRTOS SMP version for 2 Core SMP CPU, you need to add SMP = 2 in your application Makefile. And
also you need to make sure your application code is placed and run on shared memory which can be accessed by both
CPUs. When SMP=2 is specified, it will define extra requried macro called configNUMBER_OF_CORES, for details,
please check OS/FreeRTOS/build.mk.

Note:

• You can check the application\freertos\ for freertos application reference

• From Nuclei SDK 0.6.0, we introduced FreeRTOS SMP support, both Nuclei RV32 and RV64 processors are
supported.

• Current version of FreeRTOS used in Nuclei SDK is V11.1.0

• If you want to change the OS ticks per seconds, you can change the configTICK_RATE_HZ defined in
FreeRTOSConfig.h

More information about FreeRTOS get started, please click https://www.freertos.org/FreeRTOS-quick-start-guide.
html

76 https://www.freertos.org/

5.6. RTOS 87

https://www.freertos.org/
https://www.freertos.org/a00110.html
https://www.freertos.org/symmetric-multiprocessing-introduction.html
https://www.freertos.org/symmetric-multiprocessing-introduction.html
https://www.freertos.org/FreeRTOS-quick-start-guide.html
https://www.freertos.org/FreeRTOS-quick-start-guide.html

Nuclei SDK, Release 0.8.0

5.6.3 UCOSII

UCOSII77 a priority-based preemptive real-time kernel for microprocessors, written mostly in the programming lan-
guage C. It is intended for use in embedded systems.

In our UCOSII portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

If you want to learn about UCOSII, please click https://www.micrium.com/books/ucosii/

We are using the opensource version of UC-OS2 source code from https://github.com/SiliconLabs/uC-OS2, with op-
timized code for Nuclei RISC-V processors.

In Nuclei SDK, if you want to use UCOSII in your application, you need to add RTOS = UCOSII in your application
Makefile.

And in your application code, you need to do the following things:

• Add UCOSII application configuration header file -> app_cfg.h and os_cfg.h

• Add application hook source file -> app_hooks.c

• Include UCOSII header files

Note:

• You can check the application\ucosii\ for ucosii application reference

• The UCOS-II application configuration template files can also be found in https://github.com/SiliconLabs/
uC-OS2/tree/master/Cfg/Template

• Current version of UCOSII used in Nuclei SDK is V2.93.00

• If you want to change the OS ticks per seconds, you can change the OS_TICKS_PER_SEC defined in os_cfg.h

Warning:

• For Nuclei SDK release > v0.2.2, the UCOSII source code is replaced using the version from https:
//github.com/SiliconLabs/uC-OS2/, and application development for UCOSII is also changed, the app_cfg.
h, os_cfg.h and app_hooks.c files are required in application source code.

5.6.4 RT-Thread

RT-Thread (page 88) was born in 2006, it is an open source, neutral, and community-based real-time operating system
(RTOS).

RT-Thread is mainly written in C language, easy to understand and easy to port(can be quickly port to a wide range of
mainstream MCUs and module chips).

It applies object-oriented programming methods to real-time system design, making the code elegant, structured, mod-
ular, and very tailorable.

In our support for RT-Thread, we get the source code of RT-Thread from a project called RT-Thread Nano78, which
only provide kernel code of RT-Thread, which is easy to be integrated with Nuclei SDK.

77 https://www.micrium.com/
78 https://github.com/RT-Thread/rtthread-nano

88 Chapter 5. Design and Architecture

https://www.micrium.com/
https://www.micrium.com/books/ucosii/
https://github.com/SiliconLabs/uC-OS2
https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template
https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template
https://github.com/SiliconLabs/uC-OS2/
https://github.com/SiliconLabs/uC-OS2/
https://github.com/RT-Thread/rtthread-nano

Nuclei SDK, Release 0.8.0

In our RT-Thread portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

And also the rt_hw_board_init function is implemented in our portable code.

If you want to learn about RT-Thread, please click:

• For Chinese version, click https://www.rt-thread.org/document/site/

• For English version, click https://github.com/RT-Thread/rt-thread#documentation

In Nuclei SDK, if you want to use RT-Thread in your application, you need to add RTOS = RTThread in your appli-
cation Makefile.

And in your application code, you need to do the following things:

• Add RT-Thread application configuration header file -> rtconfig.h

• Include RT-Thread header files

• If you want to enable RT-Thread MSH feature, just add RTTHREAD_MSH := 1 in your application Makefile.

Note:

• You can check the application\rtthread\ for rtthread application reference

• In RT-Thread, the main function is created as a RT-Thread thread, so you don’t need to do any OS initialization
work, it is done before main

• We also provide good support directly through RT-Thread official repo, you can check Nuclei processor support
for RT-Thread in RT-Thread BSP For Nuclei79.

5.6.5 ThreadX

Eclipse ThreadX80 offers a vendor-neutral, open source, safety certified OS for real-time applications, all under a
permissive license. It stands alone as the first and only RTOS with this unique blend of attributes to meet a wide range
of needs that will benefit industry adopters, developers and end users alike.

Microsoft has contributed the Azure RTOS technology to the Eclipse Foundation. With the Eclipse Foundation as its
new home, Azure RTOS now becomes Eclipse ThreadX – an advanced embedded development suite including a small
but powerful operating system that provides reliable, ultra-fast performance for resource-constrained devices.

ThreadX is IEC 61508, IEC 62304, ISO 26262, and EN 50128 conformance certified by SGS-TÜV Saar. ThreadX
has also achieved EAL4+ Common Criteria security certification. These certifications are a big differentiator, and are
unprecedented in the industry. They are a game changer, as there are currently no open source RTOS’s which have
them.

In our ThreadX portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

If you want to learn about Eclipse ThreadX, please click:

• For introduction of Eclipse ThreadX, click https://eclipse-foundation.blog/2023/11/21/
introducing-eclipse-threadx/

• For ThreadX documentation, click https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-docs/threadx/
index.md

79 https://github.com/RT-Thread/rt-thread/tree/master/bsp/nuclei/
80 https://github.com/eclipse-threadx/threadx

5.6. RTOS 89

https://www.rt-thread.org/document/site/
https://github.com/RT-Thread/rt-thread#documentation
https://github.com/RT-Thread/rt-thread/tree/master/bsp/nuclei/
https://github.com/eclipse-threadx/threadx
https://eclipse-foundation.blog/2023/11/21/introducing-eclipse-threadx/
https://eclipse-foundation.blog/2023/11/21/introducing-eclipse-threadx/
https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-docs/threadx/index.md
https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-docs/threadx/index.md

Nuclei SDK, Release 0.8.0

In Nuclei SDK, if you want to use ThreadX in your application, you need to add RTOS = ThreadX in your application
Makefile.

And in your application code, you need to do the following things:

• Add ThreadX application configuration header file -> tx_user.h

• Include ThreadX header files

Note:

• You can check the application\threadx\ for threadx application reference

• Currently we only support single core version, the SMP version is not yet supported.

5.7 Application

5.7.1 Overview

In Nuclei SDK, we just provided applications which can run in different boards without any changes in code to demon-
strate the baremetal service, freertos service and ucosii service features.

The provided applications can be divided into three categories:

• Bare-metal applications: Located in application/baremetal

• FreeRTOS applications: Located in application/freertos

• UCOSII applications: Located in application/ucosii

• RTThread applications: Located in application/rtthread

• ThreadX applications: Located in application/threadx

If you want to find more examples, please visit the following links:

• Nuclei Board Labs: https://github.com/Nuclei-Software/nuclei-board-labs

• Nuclei Tensorflow Lite Micro AI Demo: https://github.com/Nuclei-Software/npk-tflm

• Nuclei Tinymaix TinyAI Demo: https://github.com/Nuclei-Software/npk-tinymaix

• NMSIS DSP Examples: https://doc.nucleisys.com/nmsis/dsp/get_started.html#how-to-run

• NMSIS NN Examples: https://doc.nucleisys.com/nmsis/nn/get_started.html#how-to-run

• NMSIS Crypto(MbedTLS) Examples: https://github.com/Nuclei-Software/mbedtls/blob/nuclei/v3.3.0/
accelerator/README.md

And we can also provide more examples to test cpu features, please contact with our AE for help.

If you want to develop your own application in Nuclei SDK, please click Application Development (page 49) to learn
more about it.

The following applications are running using RV-STAR board or Nuclei Eval SoC.

Note:

• Since 0.7.0 introduced support for CLINT and PLIC interrupt mode, if you are working in such interrupt mode or
don’t have ECLIC module, then all RTOSes will not able to run in your environment, due to RTOS port require
ECLIC interrupt.

90 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-board-labs
https://github.com/Nuclei-Software/npk-tflm
https://github.com/Nuclei-Software/npk-tinymaix
https://doc.nucleisys.com/nmsis/dsp/get_started.html#how-to-run
https://doc.nucleisys.com/nmsis/nn/get_started.html#how-to-run
https://github.com/Nuclei-Software/mbedtls/blob/nuclei/v3.3.0/accelerator/README.md
https://github.com/Nuclei-Software/mbedtls/blob/nuclei/v3.3.0/accelerator/README.md

Nuclei SDK, Release 0.8.0

• Most of the application demostrated below using SOC=gd32vf103, you can easily change it to other SoC such
as evalsoc by change it to SOC=evalsoc

• Some applications may not be able to be run on your SoC using Nuclei CPU due to lack of cpu feature required
to run on it.

• Almost all the applications required Nuclei CPU configured with ECLIC and System Timer hardware feature.

• Almost all the application required UART to print message, so you need to implement an UART drivers and clib
stub functions, if you use SEMIHOST (page 33) to print message, it is not required.

5.7.2 Bare-metal applications

helloworld

This helloworld application81 is used to print hello world, and also will check this RISC-V CSR MISA register value.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the helloworld directory
cd application/baremetal/helloworld
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Feb 21 2020, 12:24:22
Download Mode: FLASHXIP
CPU Frequency 109323529 Hz
MISA: 0x40901105
MISA: RV32IMACUX
0: Hello World From Nuclei RISC-V Processor!
1: Hello World From Nuclei RISC-V Processor!
2: Hello World From Nuclei RISC-V Processor!
3: Hello World From Nuclei RISC-V Processor!
4: Hello World From Nuclei RISC-V Processor!
5: Hello World From Nuclei RISC-V Processor!
6: Hello World From Nuclei RISC-V Processor!
7: Hello World From Nuclei RISC-V Processor!
8: Hello World From Nuclei RISC-V Processor!
9: Hello World From Nuclei RISC-V Processor!
10: Hello World From Nuclei RISC-V Processor!
11: Hello World From Nuclei RISC-V Processor!
12: Hello World From Nuclei RISC-V Processor!
13: Hello World From Nuclei RISC-V Processor!
14: Hello World From Nuclei RISC-V Processor!
15: Hello World From Nuclei RISC-V Processor!
16: Hello World From Nuclei RISC-V Processor!
17: Hello World From Nuclei RISC-V Processor!

(continues on next page)

81 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/helloworld

5.7. Application 91

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/helloworld

Nuclei SDK, Release 0.8.0

(continued from previous page)

18: Hello World From Nuclei RISC-V Processor!
19: Hello World From Nuclei RISC-V Processor!

cpuinfo

This cpuinfo application82 is used to print the Nuclei RISC-V CPU information to help you to know what CPU features
are present in this processor.

You can also use openocd to probe the cpu feature, see https://doc.nucleisys.com/nuclei_tools/openocd/intro.html#
nuclei-customized-features

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the helloworld directory
cd application/baremetal/cpuinfo
Assume to run on UX900 SMPx8 CPU
Clean the application first
make SOC=evalsoc DOWNLOAD=sram clean
Build and upload the application
make SOC=evalsoc DOWNLOAD=sram upload

Expected output as below:

Nuclei SDK Build Time: May 28 2024, 13:36:12
Download Mode: SRAM
CPU Frequency 50322800 Hz
CPU HartID: 0

-----Nuclei RISC-V CPU Configuration Information-----
MARCHID: 0x900
MIMPID: 0x30900

ISA: RV64 A B C D F I M S U Zc Xxlcz
MCFG: ECLIC PLIC ICACHE DCACHE SMP ZC_XLCZ_EXT IREGION No-Safety-Mechanism␣

→˓DLEN=VLEN/2
ICACHE: 64 KB(set=512,way=2,lsize=64,ecc=0)
DCACHE: 64 KB(set=512,way=2,lsize=64,ecc=0)

TLB: MainTLB(set=256,way=4,entry=1,ecc=0) ITLB(entry=16) DTLB(entry=16)
IREGION: 0x18000000 128 MB

Unit Size Address
INFO 64KB 0x18000000
DEBUG 64KB 0x18010000
ECLIC 64KB 0x18020000
TIMER 64KB 0x18030000
SMP 64KB 0x18040000
CIDU 64KB 0x18050000
PLIC 64MB 0x1c000000

SMP_CFG: CC_PRESENT=1 SMP_CORE_NUM=7 IOCP_NUM=0 PMON_NUM=4
ECLIC: VERSION=0x0 NUM_INTERRUPT=71 CLICINTCTLBITS=3 MTH=0 NLBITS=3
L2CACHE: 2 MB(set=2048,way=16,lsize=64,ecc=0)

INFO-Detail:
(continues on next page)

82 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/cpuinfo

92 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/cpuinfo
https://doc.nucleisys.com/nuclei_tools/openocd/intro.html#nuclei-customized-features
https://doc.nucleisys.com/nuclei_tools/openocd/intro.html#nuclei-customized-features

Nuclei SDK, Release 0.8.0

(continued from previous page)

mpasize : 32
-----End of Nuclei CPU INFO-----

demo_timer

This demo_timer application83 is used to demonstrate how to use the CORE TIMER API including the Timer Interrupt
and Timer Software Interrupt in ECLIC interrupt mode.

• Both interrupts are registered as non-vector interrupt.

• First the timer interrupt will run for 5 times

• Then the software timer interrupt will start to run for 5 times

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_timer directory
cd application/baremetal/demo_timer
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Feb 21 2020, 12:52:37
Download Mode: FLASHXIP
CPU Frequency 108794117 Hz
init timer and start
MTimer IRQ handler 1
MTimer IRQ handler 2
MTimer IRQ handler 3
MTimer IRQ handler 4
MTimer IRQ handler 5
MTimer SW IRQ handler 1
MTimer SW IRQ handler 2
MTimer SW IRQ handler 3
MTimer SW IRQ handler 4
MTimer SW IRQ handler 5
MTimer msip and mtip interrupt test finish and pass

83 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_timer

5.7. Application 93

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_timer

Nuclei SDK, Release 0.8.0

demo_clint_timer

This demo_clint_timer application84 is used to demonstrate how to use the CORE TIMER API including the Timer
Interrupt and Timer Software Interrupt in CLINT interrupt mode.

• Interrupt is set to working in CLINT interrupt mode

• Both interrupts are registered as core interrupt.

• First the timer interrupt will run for 5 times

• Then the software timer interrupt will start to run for 5 times

• NOTE: not able to working in qemu, and only works for evalsoc

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_timer directory
cd application/baremetal/demo_clint_timer
Clean the application first
make SOC=evalsoc clean
Build and upload the application
make SOC=evalsoc upload

Expected output as below:

Nuclei SDK Build Time: Jul 25 2024, 10:39:39
Download Mode: ILM
CPU Frequency 16000614 Hz
CPU HartID: 0
init timer and start
SysTimer IRQ handler 1
SysTimer IRQ handler 2
SysTimer IRQ handler 3
SysTimer IRQ handler 4
SysTimer IRQ handler 5
SysTimer SW IRQ handler 1
SysTimer SW IRQ handler 2
SysTimer SW IRQ handler 3
SysTimer SW IRQ handler 4
SysTimer SW IRQ handler 5
SysTimer MTIP and MSIP CLINT interrupt test finish and pass

demo_eclic

This demo_eclic application85 is used to demonstrate how to use the ECLIC API and Interrupt is working in ECLIC
interrupt mode.

Note: In this application’s Makefile, we provided comments in Makefile about optimize for code size.

If you want to optimize this application for code size, you can set the COMMON_FLAGS variable to the following values,
we recommend to use -Os -flto.

84 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_clint_timer
85 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_eclic

94 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_clint_timer
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_eclic

Nuclei SDK, Release 0.8.0

Table 1: Code size optimization for demo_eclic on RV-STAR target

COMMON_FLAGS text(bytes) data(bytes) bss(bytes) total(bytes)
13724 112 2266 16102

-flto 13598 112 2266 15976
-Os 9690 112 2264 12066
-Os -flto 9132 112 2264 11508
-Os -msave-restore -fno-unroll-loops 9714 112 2264 12090
-Os -msave-restore -fno-unroll-loops -flto 9204 112 2264 11580

• The timer interrupt and timer software interrupt are used

• The timer interrupt is registered as non-vector interrupt

• The timer software interrupt is registered as vector interrupt, and we enable its preemptive feature by using
SAVE_IRQ_CSR_CONTEXT and RESTORE_IRQ_CSR_CONTEXT in timer software interrupt handler

• The timer interrupt is triggered periodically

• The timer software interrupt is triggered in timer interrupt handler using SysTimer_SetSWIRQ function

• In the application code, there is a macro called SWIRQ_INTLEVEL_HIGHER to control the timer software interrupt
working feature:

– If SWIRQ_INTLEVEL_HIGHER=1, the timer software interrupt level is higher than timer interrupt
level, so when timer software interrupt is triggered, then timer software interrupt will be processed imme-
diately, and timer interrupt will be preempted by timer software interrupt.

– If SWIRQ_INTLEVEL_HIGHER=0, the timer software interrupt level is lower than timer interrupt level,
so when timer software interrupt is triggered, then timer software interrupt will be processed after timer
interrupt, and timer interrupt will not be preempted by timer software interrupt.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_eclic directory
cd application/baremetal/demo_eclic
Change macro SWIRQ_INTLEVEL_HIGHER value in demo_eclic.c
to see different working mode of this demo
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output(SWIRQ_INTLEVEL_HIGHER=1) as below:

Nuclei SDK Build Time: Feb 21 2020, 16:35:58
Download Mode: FLASHXIP
CPU Frequency 108794117 Hz
Initialize timer and start timer interrupt periodically

[IN TIMER INTERRUPT]timer interrupt hit 0 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN SOFTWARE INTERRUPT]software interrupt hit 0 times

(continues on next page)

5.7. Application 95

Nuclei SDK, Release 0.8.0

(continued from previous page)

[IN SOFTWARE INTERRUPT]software interrupt end
[IN TIMER INTERRUPT]timer interrupt end

[IN TIMER INTERRUPT]timer interrupt hit 1 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN SOFTWARE INTERRUPT]software interrupt hit 1 times
[IN SOFTWARE INTERRUPT]software interrupt end
[IN TIMER INTERRUPT]timer interrupt end

[IN TIMER INTERRUPT]timer interrupt hit 2 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN SOFTWARE INTERRUPT]software interrupt hit 2 times
[IN SOFTWARE INTERRUPT]software interrupt end
[IN TIMER INTERRUPT]timer interrupt end

[IN TIMER INTERRUPT]timer interrupt hit 3 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN SOFTWARE INTERRUPT]software interrupt hit 3 times
[IN SOFTWARE INTERRUPT]software interrupt end
[IN TIMER INTERRUPT]timer interrupt end

Expected output(SWIRQ_INTLEVEL_HIGHER=0) as below:

Nuclei SDK Build Time: Feb 21 2020, 16:35:58
Download Mode: FLASHXIP
CPU Frequency 108794117 Hz
Initialize timer and start timer interrupt periodically

[IN TIMER INTERRUPT]timer interrupt hit 0 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN TIMER INTERRUPT]timer interrupt end
[IN SOFTWARE INTERRUPT]software interrupt hit 0 times
[IN SOFTWARE INTERRUPT]software interrupt end

[IN TIMER INTERRUPT]timer interrupt hit 1 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN TIMER INTERRUPT]timer interrupt end
[IN SOFTWARE INTERRUPT]software interrupt hit 1 times
[IN SOFTWARE INTERRUPT]software interrupt end

[IN TIMER INTERRUPT]timer interrupt hit 2 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN TIMER INTERRUPT]timer interrupt end
[IN SOFTWARE INTERRUPT]software interrupt hit 2 times
[IN SOFTWARE INTERRUPT]software interrupt end

(continues on next page)

96 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

(continued from previous page)

[IN TIMER INTERRUPT]timer interrupt hit 3 times
[IN TIMER INTERRUPT]trigger software interrupt
[IN TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN TIMER INTERRUPT]timer interrupt end
[IN SOFTWARE INTERRUPT]software interrupt hit 3 times
[IN SOFTWARE INTERRUPT]software interrupt end

demo_plic

This demo_plic application86 is used to demonstrate how to use the PLIC API and Interrupt is working in CLINT/PLIC
interrupt mode.

Note: This demo only works on evalsoc, and require PLIC module present.

• This demo will show how to use plic external interrupt

• This demo use uart rx interrupt

• NOTE: not able to working in qemu

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_plic directory
cd application/baremetal/demo_plic
For this case, if your bit has PLIC, and you are not using sdk generated by nuclei_gen
XLCFG_PLIC=1 will define CFG_HAS_PLIC macro
make SOC=evalsoc XLCFG_PLIC=1 clean
Build and upload the application
make SOC=evalsoc XLCFG_PLIC=1 upload

Nuclei SDK Build Time: Jul 23 2024, 17:49:27
Download Mode: ILM
CPU Frequency 50000000 Hz
CPU HartID: 0
You can press any key now to trigger uart receive interrupt
Enter uart0 interrupt, you just typed: 1
Enter uart0 interrupt, you just typed: 2

demo_dsp

This demo_dsp application87 is used to demonstrate how to NMSIS-DSP API.

• Mainly show how we can use NMSIS DSP library and header files.

• It mainly demo the riscv_conv_xx functions and its reference functions

• By default, the application will use prebuilt NMSIS-DSP library match riscv isa arch defined by CORE (page 30)
and ARCH_EXT (page 31)

86 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_plic
87 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_dsp

5.7. Application 97

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_plic
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_dsp

Nuclei SDK, Release 0.8.0

• If your selected CORE and ARCH_EXT don’t have a prebuilt NMSIS DSP library, you can use NM-
SIS_LIB_ARCH (page 38) make variable to select another most suitable prebuilt NMSIS DSP or NN library.

eg. If you build with make CORE=n900f ARCH_EXT=_zca_zcb_zcf_zcmp_zcmt_xxldsp clean
all, you will get a link error like this riscv64-unknown-elf/bin/ld: cannot find
-lnmsis_dsp_rv32imaf_zca_zcb_zcf_zcmp_zcmt_xxldsp: No such file or directory, this is caused
by no prebuilt libraries are built with Zc* extension. But you can build it by modify this example’s Makefile by adding
NMSIS_LIB_ARCH := rv32imafc_xxldsp newline.

Take care Zc* is not fully compatiable with C extension, especially when D extension present, see latest RISC-V ISA
manual riscv-unprivileged.pdf which can found in https://github.com/riscv/riscv-isa-manual/releases .

And if you want to modify and build your own NMSIS DSP and NN library and see other DSP and NN examples and
test cases, you can checkout the following links:

• https://github.com/Nuclei-Software/NMSIS

• https://doc.nucleisys.com/nmsis/dsp/index.html

• https://doc.nucleisys.com/nmsis/nn/index.html

Note:

• For other Nuclei Processor Core based SoC, please check whether it has DSP feature enabled to decide which
kind of NMSIS-DSP library to use.

• Even our NMSIS-DSP library with DSP disabled are also optimized, so it can also provide good performance in
some functions.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_dsp directory
cd application/baremetal/demo_dsp
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Jun 18 2020, 17:43:31
Download Mode: FLASHXIP
CPU Frequency 108270000 Hz
CSV, riscv_conv_q31, 1225418
CSV, ref_conv_q31, 2666240
SUCCESS, riscv_conv_q31
CSV, riscv_conv_q15, 289940
CSV, ref_conv_q15, 311158
SUCCESS, riscv_conv_q15
CSV, riscv_conv_q7, 463
CSV, ref_conv_q7, 846
SUCCESS, riscv_conv_q7
CSV, riscv_conv_fast_q15, 106293
CSV, ref_conv_fast_q15, 247938
SUCCESS, riscv_conv_fast_q15
CSV, riscv_conv_fast_q31, 490539

(continues on next page)

98 Chapter 5. Design and Architecture

https://github.com/riscv/riscv-isa-manual/releases
https://github.com/Nuclei-Software/NMSIS
https://doc.nucleisys.com/nmsis/dsp/index.html
https://doc.nucleisys.com/nmsis/nn/index.html

Nuclei SDK, Release 0.8.0

(continued from previous page)

CSV, ref_conv_fast_q31, 2215917
SUCCESS, riscv_conv_fast_q31
CSV, riscv_conv_opt_q15, 217250
CSV, ref_conv_opt_q15, 311162
SUCCESS, riscv_conv_opt_q15
CSV, riscv_conv_opt_q7, 714
CSV, ref_conv_opt_q7, 842
SUCCESS, riscv_conv_opt_q7
CSV, riscv_conv_fast_opt_q15, 137252
CSV, ref_conv_fast_opt_q15, 249958
SUCCESS, riscv_conv_fast_opt_q15
all test are passed. Well done!

lowpower

This lowpower application88 is used to demonstrate how to use low-power feature of RISC-V processor.

Timer interrupt is setup before enter to wfi mode, and global interrupt will be disabled, so interrupt handler will not be
entered, and will directly resume to next pc of wfi.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Assume your processor has enabled low-power feature
cd to the low-power directory
cd application/baremetal/lowpower
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300 upload

Expected output as below:

Nuclei SDK Build Time: Jun 9 2022, 11:23:14
Download Mode: ILM
CPU Frequency 15996354 Hz
CSV, WFI Start/End, 178264/178289
CSV, WFI Cost, 25

smphello

This smphello application89 is used to demonstrate how to use baremetal SMP feature.

This demo requests the SMP cores share the same RAM and ROM, for example, in current evalsoc system, ilm/dlm
are private resource for cpu, only the DDR/SRAM memory are shared resource for all the cpu.

And RVA atomic extension is required to run this application, this extension is used to do spinlock in this example.

Note:
88 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/lowpower
89 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/smphello

5.7. Application 99

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/lowpower
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/smphello

Nuclei SDK, Release 0.8.0

• It doesn’t work with gd32vf103 processor.

• MUST Need to enable I/D Cache in <Device.h> if I/D Cache present in CPU.

• It needs at least a 2-Core SMP CPU

• Each hart must wait until all the harts stop printing(or just stay in while (1); after its job has finished),
because the _postmain_fini will print some dummy ‘0’, which has no lock-protecting to UART causing
corrupted-printing

• spinlock lock should be volatile, or else the compiler maybe optimize out the spinlock_unlock if more
than one pair of spinlock_lock spinlock_unlock used in one function/branch, causing the lock unreleased

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei UX900 SMP 2 Core RISC-V processor as example
application needs to run in ddr memory not in ilm memory
cd to the smphello directory
cd application/baremetal/smphello
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval SMP=2 CORE=ux900 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval SMP=2 CORE=ux900 upload

Expected output as below:

Nuclei SDK Build Time: May 30 2022, 15:38:00
Download Mode: SRAM
CPU Frequency 15998648 Hz
Hello world from hart 0
Hello world from hart 1
All harts boot successfully!

demo_nice

Note:

• It doesn’t work with gd32vf103 processor.

• Need nice feature enabled, and Nuclei NICE hardware demo integrated such as evalsoc

This demo_nice application90 is used to demonstrate how to Nuclei NICE feature.

NICE is short for Nuclei Instruction Co-unit Extension, which is used to support extensive customization and special-
ization.

NICE allows customers to create user-defined instructions, enabling the integrations of custom hardware co-units that
improve domain-specific performance while reducing power consumption.

For more about NICE feature, please click Nuclei User Extended Introduction91.

• Mainly show how to use NICE intrinsic function with compiler.
90 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_nice
91 https://doc.nucleisys.com/nuclei_spec/isa/nice.html

100 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_nice
https://doc.nucleisys.com/nuclei_spec/isa/nice.html

Nuclei SDK, Release 0.8.0

• It only works with Nuclei RISC-V Processor with the hardware NICE demo integrated.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei UX900 RISC-V processor as example, hardware NICE demo integrated
cd to the demo_dsp directory
cd application/baremetal/demo_nice
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 upload

Expected output as below:

Nuclei SDK Build Time: May 28 2024, 13:32:18
Download Mode: ILM
CPU Frequency 49999631 Hz
CPU HartID: 0

Nuclei Nice Acceleration Demonstration
Warning: This demo required CPU to implement Nuclei provided NICE Demo instructions.

Otherwise this example will trap to cpu core exception!

1. Print input matrix array
the element of array is :

10 30 90
20 40 80
30 90 120

2. Do reference matrix column sum and row sum
3. Do nice matrix column sum and row sum
4. Compare reference and nice result
5) Reference result:
the sum of each row is :

130 140 240
the sum of each col is :

60 160 290
6) Nice result:
the sum of each row is :

130 140 240
the sum of each col is :

60 160 290
7) Compare reference vs nice: PASS
8. Performance summary

normal:
instret: 502, cycle: 502

nice :
instret: 177, cycle: 177

5.7. Application 101

Nuclei SDK, Release 0.8.0

demo_vnice

Note:

• It only works with Nuclei EvalSoC with Vector NICE demo instructions enabled.

• Need vector nice feature enabled, and Nuclei NICE hardware demo integrated such as evalsoc

This demo_vnice application92 is used to demonstrate how to Nuclei Vector NICE feature.

NICE is short for Nuclei Instruction Co-unit Extension, which is used to support extensive customization and special-
ization.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei UX900 + Vector Nice RISC-V processor as example, hardware NICE demo␣
→˓integrated
cd to the demo_dsp directory
cd application/baremetal/demo_vnice
Clean the application first
make SOC=evalsoc clean
Build and upload the application
make SOC=evalsoc upload

Expected output as below:

Nuclei SDK Build Time: May 28 2024, 13:31:08
Download Mode: ILM
CPU Frequency 1000000716 Hz
CPU HartID: 0
1. Set array_normal_in1 array_normal_in1 array_vnice_in1 array_vnice_in2
2. Do reference vector complex mul, store, load
3. Do vector nice complex mul, store, load
4. Compare reference and vnice result
PASS
5. Performance summary

normal:
instret: 22546, cycle: 22546

vnice :
instret: 1010, cycle: 1010

coremark

This coremark benchmark application93 is used to run EEMBC CoreMark Software.

EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the CoreMark License that
is distributed with the official EEMBC COREMARK Software release. If you received this EEMBC CoreMark Soft-
ware without the accompanying CoreMark License, you must discontinue use and download the official release from
www.coremark.org.

In Nuclei SDK, we provided code and Makefile for this coremark application. You can also optimize the
COMMON_FLAGS defined in coremark application Makefile to get different score number.

92 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_vnice
93 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/coremark

102 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_vnice
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/coremark

Nuclei SDK, Release 0.8.0

• By default, this application runs for 800 iterations, you can also change this in Makefile. e.g. Change this
-DITERATIONS=800 to value such as -DITERATIONS=5000

• macro PERFORMANCE_RUN=1 is defined

• STDCLIB ?= newlib_small is added in its Makefile to enable float value print

• For different Nuclei CPU series, the benchmark options are different, currently you can pass CPU_SERIES=900 to
select benchmark options for 900 series, otherwise the benchmark options for 200/300/600/900 will be selected
which is also the default value.

Note:

• Since for each SoC platforms, the CPU frequency is different, so user need to change the ITERATIONS defined
in Makefile to proper value to let the coremark run at least 10 seconds

• For example, for the gd32vf103 based boards supported in Nuclei SDK, we suggest to change
-DITERATIONS=800 to -DITERATIONS=5000

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the coremark directory
cd application/baremetal/benchmark/coremark
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs_zicond clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs_zicond upload

Expected output as below:

Nuclei SDK Build Time: May 6 2025, 16:33:08
Download Mode: ILM
CPU Frequency 16003563 Hz
CPU HartID: 0
Start to run coremark for 800 iterations
2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks : 207671961
Total time (secs): 12.976789
Iterations/Sec : 61.648533
Iterations : 800
Compiler version : GCC14.2.1 20240816
Compiler flags : -Ofast -fno-code-hoisting -fno-common -finline-functions -falign-
→˓functions=6 -falign-jumps=6 -falign-loops=4 -finline-limit=2001
Memory location : STACK
seedcrc : 0xe9f5
[0]crclist : 0xe714
[0]crcmatrix : 0x1fd7
[0]crcstate : 0x8e3a
[0]crcfinal : 0xcc42
Correct operation validated. See readme.txt for run and reporting rules.

(continues on next page)

5.7. Application 103

Nuclei SDK, Release 0.8.0

(continued from previous page)

CoreMark 1.0 : 61.648533 / GCC14.2.1 20240816 -Ofast -fno-code-hoisting -fno-common -
→˓finline-functions -falign-functions=6 -falign-jumps=6 -faligns

(Iterations is: 800
(total_ticks is: 207671961

(*) Assume the core running at 1 MHz
So the CoreMark/MHz can be calculated by:
(Iterations*1000000/total_ticks) = 3.852229 CoreMark/MHz

CSV, Benchmark, Iterations, Cycles, CoreMark/MHz
CSV, CoreMark, 800, 207671961, 3.852
IPC = Instret/Cycle = 184031355/207671961 = 0.886

dhrystone

This dhrystone benchmark application94 is used to run DHRYSTONE Benchmark Software, whose version is v2.1.

The Dhrystone benchmark program has become a popular benchmark for CPU/compiler performance measurement,
in particular in the area of minicomputers, workstations, PC’s and microprocesors.

• It apparently satisfies a need for an easy-to-use integer benchmark;

• it gives a first performance indication which is more meaningful than MIPS numbers which, in their literal
meaning (million instructions per second), cannot be used across different instruction sets (e.g. RISC vs. CISC).

• With the increasing use of the benchmark, it seems necessary to reconsider the benchmark and to check whether
it can still fulfill this function.

In Nuclei SDK, we provided code and Makefile for this dhrystone application. You can also optimize the
COMMON_FLAGS defined in dhrystone application Makefile to get different score number.

• STDCLIB ?= newlib_small is added in its Makefile to enable float value print

• You can change Number_Of_Runs in dhry_1.c to increate or decrease number of iterations

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the dhrystone directory
cd application/baremetal/benchmark/dhrystone
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs upload

Expected output as below:

94 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/dhrystone

104 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/dhrystone

Nuclei SDK, Release 0.8.0

Nuclei SDK Build Time: May 6 2025, 16:29:34
Download Mode: ILM
CPU Frequency 16004874 Hz
CPU HartID: 0

Dhrystone Benchmark, Version 2.1 (Language: C)

Program compiled without 'register' attribute

Please give the number of runs through the benchmark:
Execution starts, 500000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob: 5
should be: 5

Bool_Glob: 1
should be: 1

Ch_1_Glob: A
should be: A

Ch_2_Glob: B
should be: B

Arr_1_Glob[8]: 7
should be: 7

Arr_2_Glob[8][7]: 500010
should be: Number_Of_Runs + 10

Ptr_Glob->
Ptr_Comp: -1879032528

should be: (implementation-dependent)
Discr: 0

should be: 0
Enum_Comp: 2

should be: 2
Int_Comp: 17

should be: 17
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
Ptr_Comp: -1879032528

should be: (implementation-dependent), same as above
Discr: 0

should be: 0
Enum_Comp: 1

should be: 1
Int_Comp: 18

should be: 18
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc: 5

should be: 5
Int_2_Loc: 13

should be: 13
(continues on next page)

5.7. Application 105

Nuclei SDK, Release 0.8.0

(continued from previous page)

Int_3_Loc: 7
should be: 7

Enum_Loc: 1
should be: 1

Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
should be: DHRYSTONE PROGRAM, 1'ST STRING

Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
should be: DHRYSTONE PROGRAM, 2'ND STRING

(*) User_Cycle for total run through Dhrystone with loops 500000:
151000097

So the DMIPS/MHz can be calculated by:
1000000/(User_Cycle/Number_Of_Runs)/1757 = 1.884608 DMIPS/MHz

CSV, Benchmark, Iterations, Cycles, DMIPS/MHz
CSV, Dhrystone, 500000, 151000097, 1.884
IPC = Instret/Cycle = 145000036/151000097 = 0.960

dhrystone_v2.2

This dhrystone_v2.2 benchmark application95 is used to run DHRYSTONE Benchmark Software, whose version is
v2.2.

In Nuclei SDK, we provided code and Makefile for this dhrystone application. You can also optimize the
COMMON_FLAGS defined in dhrystone application Makefile to get different score number.

• STDCLIB ?= newlib_small is added in its Makefile to enable float value print

• Number_Of_Runs will increase itself if running time is too small

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the dhrystone_v2.2 directory
cd application/baremetal/benchmark/dhrystone_v2.2
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd ARCH_EXT=_zba_zbb_zbc_
→˓zbs upload

Expected output as below:

Nuclei SDK Build Time: May 6 2025, 16:22:34
Download Mode: ILM
CPU Frequency 16006184 Hz
CPU HartID: 0

Dhrystone Benchmark, Version C, Version 2.2
Program compiled without 'register' attribute

(continues on next page)

95 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/dhrystone_v2.2

106 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/dhrystone_v2.2

Nuclei SDK, Release 0.8.0

(continued from previous page)

Using time(), HZ=1

Trying 50000 runs through Dhrystone:
Measured time too small to obtain meaningful results

Trying 500000 runs through Dhrystone:
Final values of the variables used in the benchmark:

Int_Glob: 5
should be: 5

Bool_Glob: 1
should be: 1

Ch_1_Glob: A
should be: A

Ch_2_Glob: B
should be: B

Arr_1_Glob[8]: 7
should be: 7

Arr_2_Glob[8][7]: 550010
should be: Number_Of_Runs + 10

Ptr_Glob->
Ptr_Comp: -1879032368

should be: (implementation-dependent)
Discr: 0

should be: 0
Enum_Comp: 2

should be: 2
Int_Comp: 17

should be: 17
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
Ptr_Comp: -1879032368

should be: (implementation-dependent), same as above
Discr: 0

should be: 0
Enum_Comp: 1

should be: 1
Int_Comp: 18

should be: 18
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc: 5

should be: 5
Int_2_Loc: 13

should be: 13
Int_3_Loc: 7

should be: 7
Enum_Loc: 1

should be: 1
Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING

should be: DHRYSTONE PROGRAM, 1'ST STRING

(continues on next page)

5.7. Application 107

Nuclei SDK, Release 0.8.0

(continued from previous page)

Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
should be: DHRYSTONE PROGRAM, 2'ND STRING

Microseconds for one run through Dhrystone: 14.0
Dhrystones per Second: 71429

(*) User_Cycle for total run through Dhrystone with loops 500000:
128000082

So the DMIPS/MHz can be calculated by:
1000000/(User_Cycle/Number_Of_Runs)/1757 = 2.223248 DMIPS/MHz

CSV, Benchmark, Iterations, Cycles, DMIPS/MHz
CSV, Dhrystone_v2.2, 500000, 128000082, 2.223
IPC = Instret/Cycle = 117500053/128000082 = 0.917

whetstone

This whetstone benchmark application96 is used to run C/C++ Whetstone Benchmark Software (Single or Double
Precision), whose version is roy@roylongbottom.org.uk, 6 November 1996.

The Fortran Whetstone programs were the first general purpose benchmarks that set industry standards of computer
system performance. Whetstone programs also addressed the question of the efficiency of different programming
languages, an important issue not covered by more contemporary standard benchmarks.

In Nuclei SDK, we provided code and Makefile for this whetstone application. You can also optimize the
COMMON_FLAGS defined in whetstone application Makefile to get different score number.

• STDCLIB ?= newlib_small is added in its Makefile to enable float value print

• Extra LDFLAGS := -lm is added in its Makefile to include the math library

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the whetstone directory
cd application/baremetal/benchmark/whetstone
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd upload

Expected output as below:

Nuclei SDK Build Time: May 6 2025, 16:31:23
Download Mode: ILM
CPU Frequency 15984885 Hz
CPU HartID: 0

##
Double Precision C Whetstone Benchmark Opt 3 32 Bit
Calibrate

(continues on next page)

96 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone

108 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone
mailto:roy@roylongbottom.org.uk

Nuclei SDK, Release 0.8.0

(continued from previous page)

0.37 Seconds 1 Passes (x 100)

Use 8 passes (x 100)

Double Precision C/C++ Whetstone Benchmark
Loop content Result MFLOPS MOPS Seconds

N1 floating point -1.12441415430187974 12.486 0.012
N2 floating point -1.12239951147853168 16.874 0.064
N3 if then else 1.00000000000000000 0.000 0.000
N4 fixed point 12.00000000000000000 120.022 0.021
N5 sin,cos etc. 0.49907428465337039 0.402 1.654
N6 floating point 0.99999988495142078 9.600 0.449
N7 assignments 3.00000000000000000 71.982 0.021
N8 exp,sqrt etc. 0.75095530233199781 0.423 0.704

MWIPS 27.355 2.925

MWIPS/MHz 1.711 2.925

CSV, Benchmark, MWIPS/MHz
CSV, Whetstone, 1.711
IPC = Instret/Cycle = 35858111/49362436 = 0.726

whetstone_v1.2

This whetstone_v1.2 benchmark application97 is used to run C Converted Whetstone Single or Double Precision Bench-
mark Version 1.2 22 March 1998, which has different algorithm to this version whetstone benchmark application98 (they
are incomparable).

In Nuclei SDK, we provided code and Makefile for this whetstone_v1.2 application. You can also optimize the
COMMON_FLAGS defined in whetstone application Makefile to get different score number.

• STDCLIB ?= newlib_small is added in its Makefile to enable float value print

• Extra LDFLAGS := -lm is added in its Makefile to include the math library

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the whetstone_v1.2 directory
cd application/baremetal/benchmark/whetstone_v1.2
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300fd upload

Expected output as below:
97 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone_v1.2
98 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone

5.7. Application 109

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone_v1.2
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/benchmark/whetstone

Nuclei SDK, Release 0.8.0

Nuclei SDK Build Time: May 6 2025, 16:11:48
Download Mode: ILM
CPU Frequency 15984885 Hz
CPU HartID: 0

##
Single Precision C Whetstone Benchmark Version 1.2 22 March 1998
Nuclei SDK Build Time: May 6 2025, 16:13:56
Download Mode: ILM
CPU Frequency 16004874 Hz
CPU HartID: 0

##
Double Precision C Whetstone Benchmark Version 1.2 22 March 1998

Loops: 50000, Iterations: 1, Duration: 70 sec.
C Converted Double Precision Whetstones: 71.4 MIPS

CSV, Benchmark, MWIPS/MHz
CSV, Whetstone_v1.2, 4.462
IPC = Instret/Cycle = 704074177/1133874283 = 0.620

demo_smode_eclic

This demo_smode_eclic application99 is used to demostrate how to use the ECLIC API and Interrupt in supervisor
mode with TEE.

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with TEE feature and S-Mode ECLIC

• In this application’s Makefile, we provided comments in Makefile about optimization for code size, please refer
to chapter demo_eclic (page 94) for details.

• Need to enable TEE in <Device.h> if TEE present in CPU.

• The timer interrupt and timer software interrupt are used

• The timer interrupt is registered as non-vector interrupt

• The timer software interrupt is registered as vector interrupt, and we enable its preemptive feature by using
SAVE_IRQ_CSR_CONTEXT_S and RESTORE_IRQ_CSR_CONTEXT_S in timer software interrupt handler

• The timer interrupt is triggered periodically

• The timer software interrupt is triggered in timer interrupt handler using SysTimer_SetHartSWIRQ function

• Interrupts occur in supervisor mode to which it drops from machine mode, and you can observe the difference
from demo_eclic (page 94) by console output

• In the application code, there is a macro called SWIRQ_INTLEVEL_HIGHER to control the timer software interrupt
working feature:

99 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smode_eclic

110 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smode_eclic

Nuclei SDK, Release 0.8.0

– If SWIRQ_INTLEVEL_HIGHER=1, the timer software interrupt level is higher than timer interrupt
level, so when timer software interrupt is triggered, then timer software interrupt will be processed imme-
diately, and timer interrupt will be preempted by timer software interrupt.

– If SWIRQ_INTLEVEL_HIGHER=0, the timer software interrupt level is lower than timer interrupt level,
so when timer software interrupt is triggered, then timer software interrupt will be processed after timer
interrupt, and timer interrupt will not be preempted by timer software interrupt.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_smode_eclic directory
cd application/baremetal/demo_smode_eclic
MUST: Your CPU configuration must has TEE configured
Since Nuclei SDK 0.7.0, if you are sure CFG_HAS_TEE is not defined in cpufeature.h,␣
→˓but you have TEE
you can pass extra make variable XLCFG_TEE=1 during make command to tell sdk
the TEE present, it will define CFG_HAS_TEE
Change macro SWIRQ_INTLEVEL_HIGHER value in demo_smode_eclic.c
to see different working mode of this demo
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ilm CORE=n300 upload

Expected output(SWIRQ_INTLEVEL_HIGHER=1) as below:

Nuclei SDK Build Time: Aug 5 2022, 15:05:52
Download Mode: ILM
CPU Frequency 15989145 Hz
Current sp is 0x9000ffa0, so it is in Machine Mode!
Drop to S-Mode now
[IN S-MODE ENTRY POINT] Hello Supervisor Mode!!!
Current sp is 0x90000f40, so it is in Supervisor Mode!
Initialize timer and start timer interrupt periodically
Current sp is 0x90000d80, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 0 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 0 times
Current sp is 0x90000d10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end
Current sp is 0x90000d80, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 1 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 1 times
Current sp is 0x90000d10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end
Current sp is 0x90000d80, so it is in Supervisor Mode!

(continues on next page)

5.7. Application 111

Nuclei SDK, Release 0.8.0

(continued from previous page)

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 2 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 2 times
Current sp is 0x90000d10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end
Current sp is 0x90000d80, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 3 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 3 times
Current sp is 0x90000d10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end

Expected output(SWIRQ_INTLEVEL_HIGHER=0) as below:

Nuclei SDK Build Time: Aug 5 2022, 15:09:46
Download Mode: ILM
CPU Frequency 15989145 Hz
Current sp is 0x9000ffa0, so it is in Machine Mode!
Drop to S-Mode now
[IN S-MODE ENTRY POINT] Hello Supervisor Mode!!!
Current sp is 0x90000f50, so it is in Supervisor Mode!
Initialize timer and start timer interrupt periodically
Current sp is 0x90000d90, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 0 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN S-MODE TIMER INTERRUPT]timer interrupt end
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 0 times
Current sp is 0x90000ee0, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
Current sp is 0x90000d90, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 1 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN S-MODE TIMER INTERRUPT]timer interrupt end
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 1 times
Current sp is 0x90000ee0, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
Current sp is 0x90000d90, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 2 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN S-MODE TIMER INTERRUPT]timer interrupt end
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 2 times

(continues on next page)

112 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

(continued from previous page)

Current sp is 0x90000ee0, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
Current sp is 0x90000d90, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 3 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run when timer interrupt finished
[IN S-MODE TIMER INTERRUPT]timer interrupt end
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 3 times
Current sp is 0x90000ee0, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end

demo_smode_plic

This demo_smode_plic application100 is a bare metal program demonstrating the PLIC (Platform Level Interrupt Con-
troller) functionality in RISC-V processor’s S-Mode (Supervisor Mode). The program shows how to switch from
M-Mode to S-Mode and handle UART interrupts in S-Mode.

Note:

• Ensure hardware supports required processor features

• It needs Nuclei CPU configured with PLIC, S-Mode and PMP

• Proper definitions in <Device>.h

• Need to enable PLIC in <Device.h> if PLIC present in CPU

– __PMP_PRESENT=1 and __PLIC_PRESENT=1

This demo will demostrate the following features:

• Demonstrates M-Mode to S-Mode transition

• Configures PMP to allow S-Mode access to all address spaces

• Registers and handles UART interrupts in S-Mode

• Supports UART receive interrupt handling

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_smode_plic directory
cd application/baremetal/demo_smode_plic
MUST: Your CPU configuration must has PLIC/PMP/SMode configured
Since Nuclei SDK 0.7.0, if you are sure CFG_HAS_PLIC is not defined in cpufeature.h,␣
→˓but you have PLIC
you can pass extra make variable XLCFG_PLIC=1 during make command to tell sdk
the PLIC present, it will define CFG_HAS_PLIC
Clean the application first
make SOC=evalsoc CORE=n900 clean
Build and upload the application
make SOC=evalsoc CORE=n900 upload

100 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smode_plic

5.7. Application 113

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smode_plic

Nuclei SDK, Release 0.8.0

Nuclei SDK Build Time: Apr 28 2025, 15:06:30
Download Mode: ILM
CPU Frequency 50002329 Hz
CPU HartID: 0
Current sp is 0x9000ff80, so it is in Machine Mode!
Drop to S-Mode now
[IN S-MODE ENTRY POINT] Hello Supervisor Mode!!!
Current sp is 0x900010c0, so it is in Supervisor Mode!
You can press any key now to trigger uart receive interrupt
Enter uart0 interrupt, you just typed: 1
Enter uart0 interrupt, you just typed: 2

demo_sstc

This demo_sstc application101 is used to demostrate how to use the ECLIC API and Interrupt in supervisor mode with
TEE and SSTC.

This demo is similar with demo_smode_eclic (page 110)

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with TEE feature and S-Mode ECLIC and SSTC feature

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the demo_sstc directory
cd application/baremetal/demo_sstc
MUST: Your CPU configuration must has TEE and SSTC configured
Assume you are using n300
Clean the application first
make SOC=evalsoc CORE=n300 clean
Build and upload the application
make SOC=evalsoc CORE=n300 upload

Nuclei SDK Build Time: Feb 21 2025, 11:12:45
Download Mode: ILM
CPU Frequency 15987179 Hz
CPU HartID: 0
Current sp is 0x9000ff70, so it is in Machine Mode!
Drop to S-Mode now
[IN S-MODE ENTRY POINT] Hello Supervisor Mode!!!
Current sp is 0x90001040, so it is in Supervisor Mode!
Initialize timer and start timer interrupt periodically
Current sp is 0x90000f50, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 0 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt

(continues on next page)

101 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_sstc

114 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_sstc

Nuclei SDK, Release 0.8.0

(continued from previous page)

[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 0 times
Current sp is 0x90000e10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end
Current sp is 0x90000f50, so it is in Supervisor Mode!

[IN S-MODE TIMER INTERRUPT]timer interrupt hit 1 times
[IN S-MODE TIMER INTERRUPT]trigger software interrupt
[IN S-MODE TIMER INTERRUPT]software interrupt will run during timer interrupt
[IN S-MODE SOFTWARE INTERRUPT]software interrupt hit 1 times
Current sp is 0x90000e10, so it is in Supervisor Mode!
[IN S-MODE SOFTWARE INTERRUPT]software interrupt end
[IN S-MODE TIMER INTERRUPT]timer interrupt end
Current sp is 0x90000f50, so it is in Supervisor Mode!

demo_spmp

This demo_spmp application102 is removed from 0.8.0 release since the sPMP hardware feature is upgraded to SMPU
in nowadays Nuclei RISC-V CPU, please refer to demo_smpu (page 115).

demo_smpu

SMPU is upgraded from sPMP to enable S-mode OS to limit the physical addresses accessible by U-mode software on
a hart. This demo_smpu application103 is used to demonstrate how to grant physical memory privileges(read, write,
execute) on each physical memory region by supervisor-mode control CSRs.

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with TEE, PMP, SMPU feature

• Need to enable PMP in <Device.h> if PMP present in CPU.

• Need to enable TEE in <Device.h> if TEE present in CPU.

• Need to enable SMPU in <Device.h> if smpu present in CPU.

• The demo_smpu application104 has many common design with demo_spmp application105, and you should first
pay attention to Encoding of Permissions and Context Switching Optimization when changed to smpu

• Unlike sPMP, __set_SMPUSWITCHx should be called to activate the entries

• smpu_violation_fault_handler is registered, which is to execute when smpu violation exception occurs

• The SMPU is checked before the PMA checks and PMP checks

• There’re three config structures, pmp_config inits that M-mode grants full permission of the whole address range
on S and U mode; smpu_config_x sets protected executable address range as 2^12 bytes; smpu_config_rw

102 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_spmp
103 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smpu
104 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smpu
105 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_spmp

5.7. Application 115

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_spmp
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smpu
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_smpu
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_spmp

Nuclei SDK, Release 0.8.0

sets protected data range as 2^12 bytes, and you can change the protection, order, base_addr according to
your memory assignments

• SMPU has three kinds of rules: U-mode-only, S-mode-only, and Shared-Region rules. The S bit marks a rule as
S-mode-only when set and U-mode-only when unset

• protection of smpu_config_x and smpu_config_rw should be assigned according to 2.4. Encoding of
Permissions of Ssmpu spec

• Exception delegation from default M mode to S mode is also provided in this demo, when it violates smpu check.
When exception occurs, the print info including scause, sepc can be observed by serial console, which explains
the exception cause of smpu permission violation, and shows which asm instruction triggers the violation

• In the application code, there is a macro called TRIGGER_SMPU_VIOLATION_MODE to control the smpu working
feature:

– If TRIGGER_SMPU_VIOLATION_MODE=INSTRUCTION_SMPU_EXCEPTION, the unallowed
memory is to execute, which triggers Instruction SMPU fault, whose scause.EXCCODE = 12

– If TRIGGER_SMPU_VIOLATION_MODE=LOAD_SMPU_EXCEPTION, the unallowed memory is
to read, which triggers Load SMPU fault, whose scause.EXCODE = 13

– If TRIGGER_SMPU_VIOLATION_MODE=STORE_SMPU_EXCEPTION, the unallowed memory
is to write, which triggers Store/AMO SMPU fault, whose scause.EXCODE = 15

– If TRIGGER_SMPU_VIOLATION_MODE=EXECUTE_SHARED_DATA_REGION_EXCEPTION,
the shared R/W data region is to execute, which triggers Instruction SMPU fault

– If TRIGGER_SMPU_VIOLATION_MODE=WRITE_READONLY_SHARED_DATA_EXCEPTION,
the shared Read-only data region is to write, which triggers Store/AMO SMPU fault

– If TRIGGER_SMPU_VIOLATION_MODE=SHARE_CODE_DATA_REGION, the shared code re-
gion is to execute, and the shared R/W data region is to read and write, both of which is allowed

– If TRIGGER_SMPU_VIOLATION_MODE=RUN_WITH_ENTRY_INACTIVE, the code region and
data reigon is set to inaccessible, but disable corresponpding entries, so the rules doesn’t take effect and
execution and read/write succeed

How to run this application:

Expected output(TRIGGER_SMPU_VIOLATION_MODE=INSTRUCTION_SMPU_EXCEPTION) as below:

Nuclei SDK Build Time: Jun 18 2024, 18:36:40
Download Mode: ILM
CPU Frequency 16058613 Hz
CPU HartID: 0
------smpu demo with trigger condition 0------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x9b, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x9b, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
Instruction SMPU fault occurs, cause: 0x1000000c, epc: 0x80004000

Expected output(TRIGGER_SMPU_VIOLATION_MODE=LOAD_SMPU_EXCEPTION) as below:

Nuclei SDK Build Time: Jun 18 2024, 18:39:13
Download Mode: ILM
CPU Frequency 16068116 Hz
CPU HartID: 0
------smpu demo with trigger condition 1------

(continues on next page)

116 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

(continued from previous page)

Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x9c, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x9c, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
----protected_execute succeed!----
Attempting to read protected_data[0] at 0x90000000
Load SMPU fault occurs, cause: 0x1000000d, epc: 0x8000608c

Expected output(TRIGGER_SMPU_VIOLATION_MODE=STORE_SMPU_EXCEPTION) as below:

Nuclei SDK Build Time: Jun 18 2024, 18:40:00
Download Mode: ILM
CPU Frequency 16057630 Hz
CPU HartID: 0
------smpu demo with trigger condition 2------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x9c, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x99, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
----protected_execute succeed!----
Attempting to read protected_data[0] at 0x90000000
protected_data[0]: 0xAA succeed
Attempting to write protected_data[0] at 0x90000000
Store/AMO SMPU fault occurs, cause: 0x1000000f, epc: 0x800060b2

Expected output(TRIGGER_SMPU_VIOLATION_MODE=EXECUTE_SHARED_DATA_REGION_EXCEPTION)
as below:

Nuclei SDK Build Time: Jun 18 2024, 18:40:39
Download Mode: ILM
CPU Frequency 16057630 Hz
CPU HartID: 0
------smpu demo with trigger condition 3------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x1e, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x1e, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
Instruction SMPU fault occurs, cause: 0x1000000c, epc: 0x80004000

Expected output(TRIGGER_SMPU_VIOLATION_MODE=WRITE_READONLY_SHARED_DATA_EXCEPTION)
as below:

Nuclei SDK Build Time: Jun 18 2024, 18:41:17
Download Mode: ILM
CPU Frequency 16057630 Hz
CPU HartID: 0
------smpu demo with trigger condition 4------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x9a, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x9f, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
----protected_execute succeed!----
Attempting to read protected_data[0] at 0x90000000

(continues on next page)

5.7. Application 117

Nuclei SDK, Release 0.8.0

(continued from previous page)

protected_data[0]: 0xAA succeed
Attempting to write protected_data[0] at 0x90000000
Store/AMO SMPU fault occurs, cause: 0x1000000f, epc: 0x800060b2

Expected output(TRIGGER_SMPU_VIOLATION_MODE=SHARE_CODE_DATA_REGION) as below:

Nuclei SDK Build Time: Jun 18 2024, 18:41:46
Download Mode: ILM
CPU Frequency 16068116 Hz
CPU HartID: 0
------smpu demo with trigger condition 5------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x9a, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x1e, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
----protected_execute succeed!----
Attempting to read protected_data[0] at 0x90000000
protected_data[0]: 0xAA succeed
Attempting to write protected_data[0] at 0x90000000
Won't run here if violates rules check!

(Default)Expected output(TRIGGER_SMPU_VIOLATION_MODE=RUN_WITH_ENTRY_INACTIVE) as
below:

Nuclei SDK Build Time: Jun 18 2024, 18:42:19
Download Mode: ILM
CPU Frequency 16057630 Hz
CPU HartID: 0
------smpu demo with trigger condition 6------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x0, order_out: 32
Get smpu entry: index 0, prot_out: 0x18, addr_out: 0x80004000, order_out: 12
Get smpu entry: index 1, prot_out: 0x18, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address 0x0x80004000
----protected_execute succeed!----
Attempting to read protected_data[0] at 0x90000000
protected_data[0]: 0xAA succeed
Attempting to write protected_data[0] at 0x90000000
Won't run here if violates rules check!

demo_profiling

This demo_profiling application106 is used to demonstrate how to use gprof or gcov in Nuclei Studio.

This application itself is modified based on an opensource aes application, we add gprof and gcov collection code to
main.c, it will dump gprof and gcov data in console when main part code is executed.

Note:

• Introduced in Nuclei SDK 0.5.1, worked with Nuclei Studio >= 2024.02
106 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_profiling

118 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_profiling

Nuclei SDK, Release 0.8.0

• Using gprof or gcov introduces instrument code into the original program, necessitating additional memory to
store the collected data. This results in a slight increase in the program’s memory footprint compared to its
uninstrumented counterpart.

• It cannot be directly used in command line mode, you should use it in Nuclei Studio.

• Please check README.md about gcov and gprof support in https://github.com/Nuclei-Software/nuclei-sdk/tree/
master/Components/profiling

Import or download Nuclei SDK 0.5.1 or later release NPK in Nuclei Studio, and then create a project called
demo_profiling based on app-nsdk_demo_profiling using Create Nuclei RISC-V C/C++ Project Wizard
as below:

And when example is created, assume you want to profiling the application folder, since it is the core algorithm of
this example, then you just need to do the following steps:

• Right click on the application folder, and click Properities, and add extra options in C/C++ Build ->
Settings -> GNU RISC-V Cross C Compiler -> Miscellaneous -> Other compiler flags. - If you
want to do gprof, you need to add -pg option. - If you want to do gcov, you need to add -coverage option.

• Open main.c, and find TODO item, and comment gprof_collect(2); or gcov_collect(2); based on gprof
or gcov you want to collect.

• If you want to collect gprof data, you also need to modify nuclei_sdk/Components/profiling/

5.7. Application 119

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/Components/profiling
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/Components/profiling

Nuclei SDK, Release 0.8.0

gprof_stub.c, if you code already has a 1ms period timer interrupt, you should copy code
in eclic_mtip_handler to do executing sampling, otherwise you can uncomment #define
SAMPLE_USING_SYSTIMER

Here I want to collect both gprof and gcov, so I modify it like below:

And then compile this example code, and run it using hardware or qemu, qemu is just function model, so it didn’t
provide correct timing information.

When program runs, it will dump gprof and gcov data in console, and you can copy all the output as a file called
prof.log, and use gprof_parse.py to parse the data, and generate a gcov and gprof binary files.

Then you can double click gmon.out and aes.gcda to check the gprof and gcov view in Nuclei Studio like below:

About GProf view, please click https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gprof.docs/Linux_Tools_
Project/GProf/User_Guide/GProf-View.html to learn more.

About Gcov view, please click https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_

120 Chapter 5. Design and Architecture

https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gprof.docs/Linux_Tools_Project/GProf/User_Guide/GProf-View.html
https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gprof.docs/Linux_Tools_Project/GProf/User_Guide/GProf-View.html
https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html
https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html

Nuclei SDK, Release 0.8.0

5.7. Application 121

https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html
https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html

Nuclei SDK, Release 0.8.0

Project/GCov/User_Guide/Gcov-main-view.html to learn more.

demo_pmp

This demo_pmp application107 is used to demonstrate how to grant physical memory privileges (read, write, execute)
on each physical memory region by machine mode control CSRs.

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with PMP feature

• Need to enable PMP in <Device.h> if PMP present in CPU.

• pmp_violation_fault_handler is registered, which is to execute when pmp violation exception occurs

• There’re two config structures, pmp_config_x sets protected executable address range as 2^12 bytes;
pmp_config_rw sets protected readable/writable address range as 2^12 bytes, and you can change the
protection, order, base_addr according to your memory assignments

• When exception occurs, the print info including mcause, mepc can be observed by serial console, which explains
the exception cause of PMP permission violation, and shows which asm instruction triggers the violation

• In the application code, there is a macro called TRIGGER_PMP_VIOLATION_MODE to control the PMP working
feature:

– If TRIGGER_PMP_VIOLATION_MODE=INSTRUCTION_FETCH_EXCEPTION, the unallowed
memory is to execute, which triggers Instruction access fault, whose mcause.EXCCODE = 1 and
mdcause = 1

– If TRIGGER_PMP_VIOLATION_MODE=LOAD_EXCEPTION, the unallowed memory is to read,
which triggers Load access fault, whose mcause.EXCODE = 5 and mdcause = 1

– If TRIGGER_PMP_VIOLATION_MODE=STORE_EXCEPTION, the unallowed memory is to write,
which triggers Store/AMO access fault, whose mcause.EXCODE = 7 and mdcause = 1

– If TRIGGER_PMP_VIOLATION_MODE=RUN_WITH_NO_PMP_CHECK, no violation occurs

How to run this application:

Expected output(TRIGGER_PMP_VIOLATION_MODE=INSTRUCTION_FETCH_EXCEPTION) as below:

Nuclei SDK Build Time: Aug 15 2022, 15:45:57
Download Mode: ILM
CPU Frequency 16006184 Hz
------PMP demo with trigger condition 0------
Get pmp entry: index 0, prot_out: 0x9b, addr_out: 0x80004000, order_out: 12
Get pmp entry: index 1, prot_out: 0x9b, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address
Instruction access fault occurs, cause: 0x30000001, epc: 0x80004000

From disassembly code, MEPC refers to

80004000: 90002537 lui a0,0x90002

Expected output(TRIGGER_PMP_VIOLATION_MODE=LOAD_EXCEPTION) as below:
107 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_pmp

122 Chapter 5. Design and Architecture

https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html
https://help.eclipse.org/latest/topic/org.eclipse.linuxtools.gcov.docs/Linux_Tools_Project/GCov/User_Guide/Gcov-main-view.html
https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_pmp

Nuclei SDK, Release 0.8.0

Nuclei SDK Build Time: Aug 15 2022, 15:45:57
Download Mode: ILM
CPU Frequency 16006184 Hz
------PMP demo with trigger condition 1------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x80004000, order_out: 12
Get pmp entry: index 1, prot_out: 0x9a, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address
----protected_execute succeed!----
Attempting to read protected_data[0]
Load access fault occurs, cause: 0x30000005, epc: 0x80004022

From disassembly code, MEPC refers to

80004022: 00044583 lbu a1,0(s0) # 90000000 <_sp+0xffff0000>

Expected output(TRIGGER_PMP_VIOLATION_MODE=STORE_EXCEPTION) as below:

Nuclei SDK Build Time: Aug 15 2022, 15:45:57
Download Mode: ILM
CPU Frequency 15998320 Hz
------PMP demo with trigger condition 2------
Get pmp entry: index 0, prot_out: 0x9f, addr_out: 0x80004000, order_out: 12
Get pmp entry: index 1, prot_out: 0x99, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address
----protected_execute succeed!----
Attempting to read protected_data[0]
protected_data[0]: 0xAA succeed
Attempting to write protected_data[0]
Store/AMO access fault occurs, cause: 0x30000007, epc: 0x80004044

From disassembly code, MEPC refers to

80004044: 00f40023 sb a5,0(s0)

(Default)Expected output(TRIGGER_PMP_VIOLATION_MODE=RUN_WITH_NO_PMP_CHECK) as be-
low:

Nuclei SDK Build Time: Aug 15 2022, 15:45:57
Download Mode: ILM
CPU Frequency 16006184 Hz
------PMP demo with trigger condition 3------
Get pmp entry: index 0, prot_out: 0x1f, addr_out: 0x80004000, order_out: 12
Get pmp entry: index 1, prot_out: 0x1b, addr_out: 0x90000000, order_out: 12
Attempting to fetch instruction from protected address
----protected_execute succeed!----
Attempting to read protected_data[0]
protected_data[0]: 0xAA succeed
Attempting to write protected_data[0]
Won't run here if violates L R\W\X permission check!

5.7. Application 123

Nuclei SDK, Release 0.8.0

demo_cidu

This demo_cidu application108 is used to demonstrate External Interrupt Distribution (external interrupt broadcast/first
come first claim), Inter Core interrupt and Semaphore of Cluster Interrupt Distribution Unit (CIDU).

This demo requests the SMP cores share the same RAM and ROM, for example, in current evalsoc/demosoc system,
ilm/dlm are private resource for cpu, only the DDR/SRAM memory are shared resource for all the cpu.

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei SMP CPU configured with CIDU feature

• It needs Nuclei EvalSoC’s uart and its interrupt, if you want to port it, you need to port uart driver of your SoC

• Need to enable CIDU in <Device.h> if CIDU present in cluster.

• Multicore SoC is needed.

• UART0 receive is used as external interrupt, registered as eclic_uart0_int_handler, which is the best choice
for evalsoc/demosoc and is easy to trigger by writing the serial terminal

• UART0 receive interrupt can be broadcast to all the cores or some, and also first coming first claim mode will
ensure only the first responding core handle the interrupt service routine(ISR)

• Inter core interrupt shows likes this: core3 sends interrupt to core2, core2 sends interrupt to core1, core1 sends
interrupt to core0, and core0 sends interrupt to core3, registered as eclic_inter_core_int_handler, sup-
posing the SoC is four cores, and etc.

• To demonstrate it will handle properly if multiple cores send interrupt to one core simultaneously, besides core2,
core0 also sends interrupt to core1, supposing the SoC is four core

• To protect UART0 resource when multicores want to access it(call printf), semaphore is configured, which
needs to be acquired successfully before accessing UART0, and release it after job done

• ENABLE_FIRST_COME_FIRST_CLAIM_MODE is defined by default, you can comment it to just use broadcast mode

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei UX900 SMP 2/4/8(4/8 is better) Core RISC-V processor as example
application needs to run in ddr memory not in ilm memory
cd to the demo_cidu directory
cd application/baremetal/demo_cidu
Since Nuclei SDK 0.7.0, if you are sure CFG_HAS_IDU is not defined in cpufeature.h,␣
→˓but you have CIDU
you can pass extra make variable XLCFG_CIDU=1 during make command to tell sdk
the cidu present, it will define CFG_HAS_IDU
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval SMP=4 CORE=ux900 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval SMP=4 CORE=ux900 upload

Expected output(inter core interrupt) as below:

108 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_cidu

124 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_cidu

Nuclei SDK, Release 0.8.0

Nuclei SDK Build Time: Feb 10 2023, 18:39:17
Download Mode: SRAM
CPU Frequency 100602675 Hz
CPU HartID: 0
Core 3 has received interrupt from core 0
Core 1 has received interrupt from core 0
Core 2 has received interrupt from core 3
Core 1 has received interrupt from core 2
Core 0 has received interrupt from core 1

From output, each core sends interrupt in order, and core 1 has received interrupts from both core 0 and core 2.

Expected output(write anything to the serial terminal, enable first come first claim mode) as below:

Nuclei SDK Build Time: Feb 10 2023, 18:44:45
Download Mode: SRAM
CPU Frequency 100612833 Hz
CPU HartID: 0
Core 3 has received interrupt from core 0
Core 1 has received interrupt from core 0
Core 2 has received interrupt from core 3
Core 1 has received interrupt from core 2
Core 0 has received interrupt from core 1
Core 2 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 2 wants to process rx input
Core 2 processed input:d
Core 3 enters uart0_receive_handler
Core 0 enters uart0_receive_handler
Core 3 wants to process rx input
Core 3 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 3 wants to process rx input
Core 3 processed input:q
Core 0 enters uart0_receive_handler
Core 2 enters uart0_receive_handler
Core 0 wants to process rx input
Core 0 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 0 wants to process rx input
Core 0 processed input:s
Core 3 enters uart0_receive_handler
Core 2 enters uart0_receive_handler
Core 3 wants to process rx input
Core 1 enters uart0_receive_handler
Core 2 enters uart0_receive_handler
Core 0 enters uart0_receive_handler
Core 1 wants to process rx input
Core 1 processed input:g
Core 3 enters uart0_receive_handler
Core 3 wants to process rx input

From output, though setting interrupt broadcasted to all(all the core enters the ISR), while only one core (the first one)
can claim the the interrupt(first come first claim) then process the uart0 input, others quit when find interrupt has been

5.7. Application 125

Nuclei SDK, Release 0.8.0

claimed.

Expected output(write anything to the serial terminal, disable first come first claim mode) as below:

Nuclei SDK Build Time: Feb 10 2023, 18:48:47
Download Mode: SRAM
CPU Frequency 100602675 Hz
CPU HartID: 0
Core 3 has received interrupt from core 0
Core 1 has received interrupt from core 0
Core 2 has received interrupt from core 3
Core 1 has received interrupt from core 2
Core 0 has received interrupt from core 1
Core 2 enters uart0_receive_handler
Core 0 enters uart0_receive_handler
Core 2 wants to process rx input
Core 2 processed input:q
Core 0 wants to process rx input
Core 1 enters uart0_receive_handler
Core 1 wants to process rx input
Core 3 enters uart0_receive_handler
Core 3 wants to process rx input
Core 3 enters uart0_receive_handler
Core 0 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 2 enters uart0_receive_handler
Core 0 wants to process rx input
Core 0 processed input:w
Core 1 wants to process rx input
Core 3 wants to process rx input
Core 2 wants to process rx input
Core 2 enters uart0_receive_handler
Core 0 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 1 wants to process rx input
Core 1 processed input:e
Core 0 wants to process rx input
Core 2 wants to process rx input
Core 3 enters uart0_receive_handler
Core 3 wants to process rx input
Core 3 enters uart0_receive_handler
Core 1 enters uart0_receive_handler
Core 3 wants to process rx input
Core 3 processed input:r
Core 0 enters uart0_receive_handler
Core 1 wants to process rx input
Core 0 wants to process rx input
Core 2 enters uart0_receive_handler
Core 2 wants to process rx input

From output, all the core enters the ISR(means broadcasted), while only one core can process the uart0 input(semaphore
used), when semaphore released, other core wants to handle the ISR job(means claim mode disabled), but process
nothing (keyboard input has been received and rx interrupt pending cleared) because it has been processed.

126 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

demo_cache

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with CCM feature

This demo_cache application109 is used to demonstrate how to understand cache mechanism.

This demo requests DCache, ICache and CCM(Cache Control and Maintenance), and needs to run in DDR/SRAM
memory, because cache will bypass when run in ilm, data in dlm(private resource for cpu).

Note:

• Need to enable DCache, ICACHE, CCM in <Device.h> if present in CPU.

• An arrary(ROW_SIZE * COL_SIZE) called array_test is created to access its first element array_test[0][0]

• Firstly, enable and invalidate all DCache, update array_test by writing a consant, the cache miss happens and
will update array_test’s mapping value in DCache, read out array_test[0][0]; then disable the Dcache,
init array_test in the ddr memory to different constant, read out array_test[0][0]; after that, enable the
DCache flushes DCache to ddr memory, read out array_test[0][0], and compare these array_test[0][0]
value

• Again disable the Dcache, init array_test in the ddr memory, read out array_test[0][0]; then enable the
DCache, read out array_test[0][0], and compare with the one before

• For further understanding, if the CPU has configured HPM (Hardware Performance Monitor), observe the cache
miss count by recording the cache miss of updating array_test with DCache invalid, then compared to updating
array_test with keeping DCache valid; also, compare the cache miss count of updating array_test row by row
with column by column

• BIG_ROW_SIZE can be defined to make the array size 2048*64 bytes, which is big to see the cache miss
gap(performance gap) between updating array_test row by row and column by column

• In our evalsoc/demosoc, cache line size is 64 bytes generally, so array_test’s COL_SIZE is 64 bytes for calcu-
lating the cache miss manually and easily

• When HPM used, because there’s global variables in HPM_START and HPM_END , these will bring 3 cache miss
itself (not considering cached)

• You can manage ICache apis like DCache, which skipped in this demo for less similar code

• Different compile optimization level such as -O2/-O0 effects cache miss

Note:

• There’s printf hidden in HPM_END, if there is another HPM_END before it, the printf will bring some cache
miss

How to run this application:

109 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_cache

5.7. Application 127

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_cache

Nuclei SDK, Release 0.8.0

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei UX900 Core RISC-V processor as example
application needs to run in ddr memory not in ilm memory
cd to the demo_cache directory
cd application/baremetal/demo_cache
Since Nuclei SDK 0.7.0, if you are sure CFG_HAS_IOCC is not defined in cpufeature.h,␣
→˓but you have CCM
you can pass extra make variable XLCFG_CCM=1 during make command to tell sdk
the ccm present, it will define CFG_HAS_IOCC
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 DOWNLOAD=sram CCM_EN=1 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 DOWNLOAD=sram CCM_EN=1 upload

Expected output(DISABLE_NMSIS_HPM defined) as below:

Nuclei SDK Build Time: Feb 14 2023, 18:14:18
Download Mode: SRAM
CPU Frequency 100605952 Hz
CPU HartID: 0
DCache Linesize is 64 bytes, ways is 2, setperway is 512, total size is 65536 bytes

array_test 10 * 64 bytes

------Update array in memory------

------Update array to all 0xab in cache: array_update_by_row------

-------Keep DCache valid, do array_update_by_row again-------

-------Invalidate all the Dcache-------

------Update array to all 0xab in cache: array_update_by_col ------
Read out array_test[0][0] 0xab in cache, then disable DCache

------Init array in memory to all 0x34------
Read out array_test[0][0] 0x34 in memory, then enable Dcache
After cache flushed to memory, array_test[0][0] in memory is 0xab

------Again init array in memory to all 0x34, then enable DCache------
Read out array_test[0][0] 0x34 in memory
Read out array_test[0][0] 0xab in cache, when mapped value in memory has changed

From output, array_test is updated in memory to all 0xab, and cached in DCache when miss happens, then disable
DCache, init array_test just in memory to all 0x34, after cache flushed to memory, array_test in memory is all
0xab same with array_test in DCache. Disable DCache and init array_test again, array_test now (all 0x34)
differs with cached array_test (all 0xab) after DCache enabled.

Expected output(DISABLE_NMSIS_HPM undefined) as below:

Nuclei SDK Build Time: Dec 27 2024, 11:07:56
Download Mode: DDR
CPU Frequency 50002001 Hz
CPU HartID: 0

(continues on next page)

128 Chapter 5. Design and Architecture

Nuclei SDK, Release 0.8.0

(continued from previous page)

Benchmark initialized
DCache Linesize is 64 bytes, ways is 2, setperway is 512, total size is 65536 bytes

array_test 10 * 64 bytes

------Update array in memory------
High performance monitor initialized

------Update array to all 0xab in cache: array_update_by_row------
CSV, array_update_by_row_cycle, 15544
HPM4:0xf0000021, array_update_by_row_dcache_miss, 21
HPM3:0xf0000011, array_update_by_row_icache_miss, 60

-------Keep DCache valid, do array_update_by_row again-------
CSV, array_update_by_row_cycle, 15164
HPM4:0xf0000021, array_update_by_row_dcache_miss, 3
HPM3:0xf0000011, array_update_by_row_icache_miss, 26

-------Invalidate all the Dcache-------

------Update array to all 0xab in cache: array_update_by_col ------
CSV, array_update_by_col_cycle, 16194
HPM4:0xf0000021, array_update_by_col_dcache_miss, 22
Read out array_test[0][0] 0xab in cache, then disable DCache

------Init array in memory to all 0x34------
Read out array_test[0][0] 0x34 in memory, then enable Dcache
After cache flushed to memory, array_test[0][0] in memory is 0xab

------Again init array in memory to all 0x34, then enable DCache------
Read out array_test[0][0] 0x34 in memory
Read out array_test[0][0] 0xab in cache, when mapped value in memory has changed
HPM4:0xf0000021, dcachemiss_readonebyte, 4

From output, HPM is enabled, cache miss is counted and array_test size is 10 * 64 bytes. At first, DCache is
invalid, the first time array_test update by row has 10 miss(HPM4 shows more, because HPM4 and other execution
it wraps bring some); Keep DCache valid, update array_test by row again, cache miss decreases rapidly, which means
array_test has already cached; Then invalidate all the Dcache, array_test update by col seems has the same cache
miss as update by row.

Expected output(BIG_ROW_SIZE defined, DISABLE_NMSIS_HPM undefined) as below:

Nuclei SDK Build Time: Dec 27 2024, 11:07:28
Download Mode: DDR
CPU Frequency 50002001 Hz
CPU HartID: 0
Benchmark initialized
DCache Linesize is 64 bytes, ways is 2, setperway is 512, total size is 65536 bytes

array_test 2048 * 64 bytes

------Update array in memory------
High performance monitor initialized

(continues on next page)

5.7. Application 129

Nuclei SDK, Release 0.8.0

(continued from previous page)

------Update array to all 0xab in cache: array_update_by_row------
CSV, array_update_by_row_cycle, 3166169
HPM4:0xf0000021, array_update_by_row_dcache_miss, 2076
HPM3:0xf0000011, array_update_by_row_icache_miss, 58

-------Keep DCache valid, do array_update_by_row again-------
CSV, array_update_by_row_cycle, 3195588
HPM4:0xf0000021, array_update_by_row_dcache_miss, 2058
HPM3:0xf0000011, array_update_by_row_icache_miss, 27

-------Invalidate all the Dcache-------

------Update array to all 0xab in cache: array_update_by_col ------
CSV, array_update_by_col_cycle, 5091193
HPM4:0xf0000021, array_update_by_col_dcache_miss, 130975
Read out array_test[0][0] 0xab in cache, then disable DCache

------Init array in memory to all 0x34------
Read out array_test[0][0] 0x34 in memory, then enable Dcache
After cache flushed to memory, array_test[0][0] in memory is 0xab

------Again init array in memory to all 0x34, then enable DCache------
Read out array_test[0][0] 0x34 in memory
Read out array_test[0][0] 0xab in cache, when mapped value in memory has changed
HPM4:0xf0000021, dcachemiss_readonebyte, 4

From output, array_test size is enlarged to 2048 * 64 bytes, which is two times the size of DCache (1024 * 64
bytes). Cache miss brought by HPM itself ignored, array update by col has 63 times cache miss(130975) as the array
update by row has(2076). That’s because when first byte access brings one cache misse, one cache line(64 bytes in
this demo) is fetched to cache, and it works best if other 63 cached bytes can be accessed before getting dirty as soon
as possible, as update by row does, so the cache miss equals nearly to ROW_SIZE, while when updated by col, every byte
in ROW_SIZE * COL_SIZE will cause a cache miss! which is cache-unfriendly. What’s more, considering array_test
size is two times the size of DCache, the cached data has been kicked out when do array_update_by_row again,
so the cache miss is nearly the same as the first time.

demo_stack_check

Note:

• It doesn’t work with gd32vf103 processor.

• It needs Nuclei CPU configured with stack check feature

This demo_stack_check application110 is used to demonstrate how to check stack overflow and underflow and track the
sp.

For now, this demo needs to run on only 300 Series v4.2.0 or later, which supports this Stack Check function.

Note:
110 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_stack_check

130 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_stack_check

Nuclei SDK, Release 0.8.0

• The Stack Check can work as expected only when the stack downwardly grows.

• STACK_TOP, STACK_BOTTOM, STACK_SIZE refers to stack’s high/low address and size in bytes, which gets from
the linker script

• stack_corrupt_exception_handler is registered as exception handler to process stack overflow and under-
flow

• A simple recursive function of calculating factorial is reformed, which will consume stack more or less by the n
input, thus may cause overflow; a trick is used to cause underflow that when it iterates over, decrease the stack
base value to make the underflow condition on purpose

• The sp has grown downwardly 0x50 bytes in the exception entry saving context, in this demo, add sp by 0x50
is the sp value that triggered overflow/underflow

• When it comes into exception and handle it over, the flow doesn’t stop in it as usual, and pc continues to execute,
which is on purpose to show overflow, underflow and track sp mode in one-time run

• In sp track mode, logging is enabled in factorial, to show the sp value change; and the BOUND won’t
track sp(won’t change) if sp is bigger in the second run

Note:

• Must set the BOUND and BASE before setting the check mode

• Reserve 0x200 bytes for exception stack push/pop

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei n300 Core RISC-V processor as example
cd to the demo_stack_check directory
cd application/baremetal/demo_stack_check
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ddr CORE=n300 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval DOWNLOAD=ddr CORE=n300 upload

Expected output as below:

Nuclei SDK Build Time: Oct 18 2023, 18:45:02
Download Mode: ILM
CPU Frequency 15996682 Hz
CPU HartID: 0
Stack's top high address: 0x90010000, stack's bottom low address: 0x9000fa00, stack␣
→˓size: 0x600

--------OVERFLOW CHECK MODE--------
BOUND register set to: 0x9000fa00
BASE register set to: 0x90010000
Stack overflow fault occurs at iteration 84, cause: 0x30000018, epc: 0x80000e90, sp:␣
→˓0x9000f990

--------UNDERFLOW CHECK MODE--------
BASE register set to: 0x9000fd00
Stack underflow fault occurs at iteration 1, cause: 0x30000019, epc: 0x80000fd0, sp:␣

(continues on next page)

5.7. Application 131

Nuclei SDK, Release 0.8.0

(continued from previous page)

→˓0x9000fd00
BASE register set to: 0x90010000

--------TRACK SP MODE--------
BOUND register set to: 0x90010000
Iterations: 1, stack bound: 0x9000fdc0
Iterations: 2, stack bound: 0x9000fd70
Iterations: 3, stack bound: 0x9000fd20
Iterations: 4, stack bound: 0x9000fcd0
Iterations: 5, stack bound: 0x9000fc80
Iterations: 6, stack bound: 0x9000fc30
Iterations: 7, stack bound: 0x9000fbe0
Iterations: 8, stack bound: 0x9000fb90
Iterations: 9, stack bound: 0x9000fb40
Iterations: 10, stack bound: 0x9000faf0
Iterations: 11, stack bound: 0x9000faa0
Iterations: 12, stack bound: 0x9000fa50
Iterations: 13, stack bound: 0x9000fa00
Iterations: 14, stack bound: 0x9000f9b0
Iterations: 15, stack bound: 0x9000f960
Iterations: 16, stack bound: 0x9000f910
Iterations: 17, stack bound: 0x9000f8c0
Iterations: 18, stack bound: 0x9000f870
Calculate factorial over, the max stack used downwards to: 0x9000f820

Rerun it. The BOUND won't track sp if sp is bigger:
Iterations: 1, stack bound: 0x9000f820
Iterations: 2, stack bound: 0x9000f820
Iterations: 3, stack bound: 0x9000f820
Iterations: 4, stack bound: 0x9000f820
Iterations: 5, stack bound: 0x9000f820

Stack check demo over!

demo_pma

This demo_pma application111 is used to demonstrate how to set memory region to different at-
tribute(Device/Non-Cacheable/Cacheable)

Note:

• PMA are split into three attributes: Device/Cacheable/Non-Cacheable, which correspondingly the whole
memory region are split into

• Take care to set the region type and address range, which maybe causing function or performance issue!

• NMSIS/Core/Include/core_feature_pma.h provides apis like PMA_DisableHwXXRegion,
PMA_EnableHwXXRegion to disable/enable hardware-defined regions, but please take care to use it, be-
cause maybe the region you disable will go to Device (maybe covered by another bigger-range Device region!),
then instruction fetch exception happens!

111 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_pma

132 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/baremetal/demo_pma

Nuclei SDK, Release 0.8.0

• Observe cycles taken when executing same task array_read_by_row``(read from ``array_test, update
into array_test_r) by changing the same memory region to Non-Cacheable/Cacheable

• Struct PMA_CONFIG is used to assign PMA, which consists of region_type region_base region_size
region_enable

• region_type could be PMA_REGION_TYPE_SECSHARE, PMA_REGION_TYPE_NC, PMA_REGION_TYPE_DEV,
PMA_REGION_TYPE_CA

• region_base is base physical address, which needs to be 4K byte aligned

• region_size needs to be 4K byte aligned; the region_base should be integer multiples of region_size

• region_enable enable(1) or disable(0) the region, could be PMA_REGION_ENA, PMA_REGION_DIS

• After pma_cfg is assigned, and give the entry_idx, call PMA_SetRegion to take effect

• The entry_idx (0-n) depends on number of paired mattri(n)_mask and mattri(n)_base, refer to Nuclei
ISA specifications for max region entries

• The api will do aligning by 4KB(because region granularity is 4KB) to region_base and region_size forcely

• The regions can be overlapped as the priority: Non-Cacheable > Cacheable > Device, , but especially be
careful not to overlap software’s instruction/data sections by Device, or overlap Device(like uart) memory by
Cacheable

• PMA_GetRegion could retrieve the region info detail

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
Use Nuclei ux900 Core RISC-V processor as example
cd to the demo_pma directory
cd application/baremetal/demo_pma
Clean the application first
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 DOWNLOAD=sram CCM_EN=1 clean
Build and upload the application
make SOC=evalsoc BOARD=nuclei_fpga_eval CORE=ux900 DOWNLOAD=sram CCM_EN=1 upload

Expected output as below:

Nuclei SDK Build Time: May 23 2025, 15:02:30
Download Mode: SRAM
CPU Frequency 50005606 Hz
CPU HartID: 0
DCache Linesize is 64 bytes, ways is 2, setperway is 512, total size is 65536 bytes

array_test size: 64 * 64 bytes, addr: 0xa0013000

Set to NonCacheable region
Region type: 0x4,region base addr: 0xa0013000, region size: 0x1000, region status: 1
HPM4:0xf0000021, array_read_by_row_dcache_miss_noncacheable, 64

Set to Cacheable region
Region type: 0x0,region base addr: 0xa0013000, region size: 0x1000, region status: 1
HPM4:0xf0000021, array_read_by_row_dcache_miss_cacheable, 128

From output, considering array_read_by_row_dcache_miss_noncacheable counting the common part cache
miss including array_test_r which belongs to Cacheable. So array_read_by_row_dcache_miss_cacheable
minus array_read_by_row_dcache_miss_noncacheable, we get exactly the cache miss(here is the row number

5.7. Application 133

Nuclei SDK, Release 0.8.0

64) that array_test brings in Cacheable region, and it demonstrates array_test brings no cache miss in Non-
Cacheable region as expected.

Note:

• In Nuclei Evalsoc core ux900 for example, the sram/ddr memory locates originally in hardware-defined
Cacheable region(which configured by rtl configuration stage), So this demo first covers original attribute by
NonCacheable, then Cacheable (that’s recovered)

• As the prority: Non-Cacheable > Cacheable > Device, it can’t cover original attribute(Cacheable) by
Device!

5.7.3 FreeRTOS applications

demo

This freertos demo application112 is to show basic freertos task functions.

• Two freertos tasks are created

• A software timer is created

In Nuclei SDK, we provided code and Makefile for this freertos demo application.

• RTOS = FreeRTOS is added in its Makefile to include FreeRTOS service

• The configTICK_RATE_HZ in FreeRTOSConfig.h is set to 100, you can change it to other number according
to your requirement.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the freertos demo directory
cd application/freertos/demo
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Feb 21 2020, 14:56:00
Download Mode: FLASHXIP
CPU Frequency 109058823 Hz
Before StartScheduler
Enter to task_1
task1 is running 0.....
Enter to task_2
task2 is running 0.....
timers Callback 0
timers Callback 1
task1 is running 1.....
task2 is running 1.....

(continues on next page)

112 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/freertos/demo

134 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/freertos/demo

Nuclei SDK, Release 0.8.0

(continued from previous page)

timers Callback 2
timers Callback 3
task1 is running 2.....
task2 is running 2.....
timers Callback 4
timers Callback 5
task1 is running 3.....
task2 is running 3.....
timers Callback 6
timers Callback 7
task1 is running 4.....
task2 is running 4.....
timers Callback 8
timers Callback 9
task1 is running 5.....
task2 is running 5.....
timers Callback 10
timers Callback 11

smpdemo

This freertos smpdemo application113 is to show basic freertos smp task functions.

• x freertos tasks(different priorities) are created if your cpu has x cores according to the SMP=x settings

• A software timer is created

• Need to run using DOWNLOAD=sram mode

In Nuclei SDK, we provided code and Makefile for this freertos smpdemo application.

• RTOS = FreeRTOS is added in its Makefile to include FreeRTOS service

• The configTICK_RATE_HZ in FreeRTOSConfig.h is set to 100, you can change it to other number according
to your requirement.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the freertos demo directory
cd application/freertos/smpdemo
This need to run on NX900 SMPx2 CPU
Clean the application first
make clean
Build and upload the application
make upload

Expected output as below:

Nuclei SDK Build Time: May 28 2024, 13:17:41
Download Mode: SRAM
CPU Frequency 50322800 Hz
CPU HartID: 0

(continues on next page)

113 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/freertos/smpdemo

5.7. Application 135

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/freertos/smpdemo

Nuclei SDK, Release 0.8.0

(continued from previous page)

Startup FreeRTOS SMP on hartid 0
Enter to task 1
task 1 prio 1 is running 0 on hart 0.....
Enter to task 0
task 0 prio 0 is running 0 on hart 0.....
task 1 prio 1 is running 1 on hart 1.....
task 0 prio 0 is running 1 on hart 0.....
task 1 prio 1 is running 2 on hart 1.....
task 0 prio 0 is running 2 on hart 0.....
task 1 prio 1 is running 3 on hart 1.....
task 0 prio 0 is running 3 on hart 0.....
task 1 prio 1 is running 4 on hart 1.....
task 0 prio 0 is running 4 on hart 0.....
task 1 prio 1 is running 5 on hart 0.....
timers Callback 0 on hart 1
task 0 prio 0 is running 5 on hart 1.....
task 1 prio 1 is running 6 on hart 1.....
task 0 prio 0 is running 6 on hart 0.....
task 1 prio 1 is running 7 on hart 1.....
task 0 prio 0 is running 7 on hart 0.....
task 1 prio 1 is running 8 on hart 1.....
task 0 prio 0 is running 8 on hart 0.....
task 1 prio 1 is running 9 on hart 1.....
task 0 prio 0 is running 9 on hart 0.....
task 1 prio 1 is running 10 on hart 0.....
timers Callback 1 on hart 1

5.7.4 UCOSII applications

demo

This ucosii demo application114 is show basic ucosii task functions.

• 4 tasks are created

• 1 task is created first, and then create 3 other tasks and then suspend itself

In Nuclei SDK, we provided code and Makefile for this ucosii demo application.

• RTOS = UCOSII is added in its Makefile to include UCOSII service

• The OS_TICKS_PER_SEC in os_cfg.h is by default set to 50, you can change it to other number according
to your requirement.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the ucosii demo directory
cd application/ucosii/demo
Clean the application first
make SOC=gd32vf103 clean

(continues on next page)

114 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/ucosii/demo

136 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/ucosii/demo

Nuclei SDK, Release 0.8.0

(continued from previous page)

Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Feb 21 2020, 15:00:35
Download Mode: FLASHXIP
CPU Frequency 108524271 Hz
Start ucosii...
create start task success
start all task...
task3 is running... 1
task2 is running... 1
task1 is running... 1
task3 is running... 2
task2 is running... 2
task3 is running... 3
task2 is running... 3
task1 is running... 2
task3 is running... 4
task2 is running... 4
task3 is running... 5
task2 is running... 5
task1 is running... 3
task3 is running... 6
task2 is running... 6
task3 is running... 7
task2 is running... 7
task1 is running... 4
task3 is running... 8
task2 is running... 8
task3 is running... 9
task2 is running... 9
task1 is running... 5
task3 is running... 10
task2 is running... 10
task3 is running... 11
task2 is running... 11
task1 is running... 6
task3 is running... 12
task2 is running... 12

5.7. Application 137

Nuclei SDK, Release 0.8.0

5.7.5 RT-Thread applications

demo

This rt-thread demo application115 is show basic rt-thread thread functions.

• main function is a pre-created thread by RT-Thread

• main thread will create 5 test threads using the same function thread_entry

In Nuclei SDK, we provided code and Makefile for this rtthread demo application.

• RTOS = RTThread is added in its Makefile to include RT-Thread service

• The RT_TICK_PER_SECOND in rtconfig.h is by default set to 100, you can change it to other number
according to your requirement.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the rtthread demo directory
cd application/rtthread/demo
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Apr 14 2020, 10:14:30
Download Mode: FLASHXIP
CPU Frequency 108270000 Hz

\ | /
- RT - Thread Operating System
/ | \ 3.1.3 build Apr 14 2020
2006 - 2019 Copyright by rt-thread team
Main thread count: 0
thread 0 count: 0
thread 1 count: 0
thread 2 count: 0
thread 3 count: 0
thread 4 count: 0
thread 0 count: 1
thread 1 count: 1
thread 2 count: 1
thread 3 count: 1
thread 4 count: 1
Main thread count: 1
thread 0 count: 2
thread 1 count: 2
thread 2 count: 2
thread 3 count: 2
thread 4 count: 2
thread 0 count: 3

(continues on next page)

115 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/demo

138 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/demo

Nuclei SDK, Release 0.8.0

(continued from previous page)

thread 1 count: 3
thread 2 count: 3
thread 3 count: 3
thread 4 count: 3
Main thread count: 2
thread 0 count: 4
thread 1 count: 4

msh

This rt-thread msh application116 demonstrates msh shell in serial console which is a component of rt-thread.

• MSH_CMD_EXPORT(nsdk, msh nuclei sdk demo) exports a command nsdk to msh shell

In Nuclei SDK, we provided code and Makefile for this rtthread msh application.

• RTOS = RTThread is added in its Makefile to include RT-Thread service

• RTTHREAD_MSH := 1 is added in its Makefile to include RT-Thread msh component

• The RT_TICK_PER_SECOND in rtconfig.h is by default set to 100, you can change it to other number
according to your requirement.

• To run this application in Nuclei Eval SoC (page 65), the SoC clock frequency must be above 16MHz, if run in
8MHz, uart read is not correct due to bit error in uart rx process.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the rtthread msh directory
cd application/rtthread/msh
Clean the application first
make SOC=gd32vf103 clean
Build and upload the application
make SOC=gd32vf103 upload

Expected output as below:

Nuclei SDK Build Time: Dec 23 2020, 16:39:21
Download Mode: FLASHXIP
CPU Frequency 108810000 Hz

\ | /
- RT - Thread Operating System
/ | \ 3.1.3 build Dec 23 2020
2006 - 2019 Copyright by rt-thread team
Hello RT-Thread!
msh >help
RT-Thread shell commands:
list_timer - list timer in system
list_mailbox - list mail box in system
list_sem - list semaphore in system
list_thread - list thread

(continues on next page)

116 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/msh

5.7. Application 139

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/msh

Nuclei SDK, Release 0.8.0

(continued from previous page)

version - show RT-Thread version information
ps - List threads in the system.
help - RT-Thread shell help.
nsdk - msh nuclei sdk demo

msh >ps
thread pri status sp stack size max used left tick error
-------- --- ------- ---------- ---------- ------ ---------- ---
tshell 6 ready 0x00000178 0x00001000 09% 0x00000008 000
tidle 7 ready 0x00000078 0x0000018c 30% 0x00000020 000
main 2 suspend 0x000000b8 0x00000200 35% 0x00000013 000
msh >nsdk
Hello Nuclei SDK!
msh >

demo_smode

This rt-thread demo smode application117 is show how to use rt-thread in S-Mode.

It is similar to the normal rt-thread demo, but rt-thread itself is running in S-Mode, so we have to do some PMP and
TEE configuration in M-Mode before go to S-Mode.

The main feature required is the TEE, and SSTC is also preferred.

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the rtthread demo_smode directory
cd application/rtthread/demo_smode
Clean the application first
Assume you are using n300
make SOC=evalsoc CORE=n300 clean
Build and upload the application
make SOC=evalsoc CORE=n300 upload

Expected output as below:

Nuclei SDK Build Time: Feb 21 2025, 11:12:24
Download Mode: ILM
CPU Frequency 16005857 Hz
CPU HartID: 0
Set ECLIC Timer S-Mode Interrupt and Software Timer S-Mode Interrupt to be executed in S-
→˓Mode
Drop to S-Mode to prepare RT-Thread Environment

\ | /
- RT - Thread Operating System
/ | \ 3.1.5 build Feb 21 2025
2006 - 2020 Copyright by rt-thread team
Main thread count: 0
thread 0 count: 0

(continues on next page)

117 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/demo_smode

140 Chapter 5. Design and Architecture

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/rtthread/demo_smode

Nuclei SDK, Release 0.8.0

(continued from previous page)

thread 1 count: 0
thread 2 count: 0
thread 3 count: 0
thread 4 count: 0
thread 0 count: 1
thread 1 count: 1
thread 2 count: 1
thread 3 count: 1
thread 4 count: 1
Main thread count: 1
thread 0 count: 2
thread 1 count: 2
thread 2 count: 2
thread 3 count: 2
thread 4 count: 2
thread 0 count: 3
thread 1 count: 3
thread 2 count: 3
thread 3 count: 3
thread 4 count: 3
Main thread count: 2

5.7.6 ThreadX applications

demo

This threadx demo application118 is show basic ThreadX thread functions.

This threadx demo is modified based on https://github.com/eclipse-threadx/threadx/blob/v6.4.1_rel/samples/demo_
threadx.c

In Nuclei SDK, we provided code and Makefile for this threadx demo application.

• RTOS = ThreadX is added in its Makefile to include ThreadX service

• The TX_INCLUDE_USER_DEFINE_FILE macro is defined in Makefile, so you can include customized user
configuration file tx_user.h

How to run this application:

Assume that you can set up the Tools and Nuclei SDK environment
cd to the threadx demo directory
cd application/threadx/demo
Clean the application first
make SOC=evalsoc clean
Build and upload the application
make SOC=evalsoc upload

Expected output as below:

Nuclei SDK Build Time: May 28 2024, 13:26:41
Download Mode: ILM

(continues on next page)

118 https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/threadx/demo

5.7. Application 141

https://github.com/Nuclei-Software/nuclei-sdk/tree/master/application/threadx/demo
https://github.com/eclipse-threadx/threadx/blob/v6.4.1_rel/samples/demo_threadx.c
https://github.com/eclipse-threadx/threadx/blob/v6.4.1_rel/samples/demo_threadx.c

Nuclei SDK, Release 0.8.0

(continued from previous page)

CPU Frequency 50322800 Hz
CPU HartID: 0
thread 6_7 is running, current is 6, thread 6 counter 1, thread 7 counter 1
thread 6_7 is running, current is 7, thread 6 counter 2, thread 7 counter 1
thread 6_7 is running, current is 6, thread 6 counter 2, thread 7 counter 2
thread 6_7 is running, current is 7, thread 6 counter 3, thread 7 counter 2
thread 6_7 is running, current is 6, thread 6 counter 3, thread 7 counter 3
thread 6_7 is running, current is 7, thread 6 counter 4, thread 7 counter 3
thread 6_7 is running, current is 6, thread 6 counter 4, thread 7 counter 4
thread 6_7 is running, current is 7, thread 6 counter 5, thread 7 counter 4

142 Chapter 5. Design and Architecture

CHAPTER

SIX

CHANGELOG

6.1 V0.8.0

Note:

• Two new benchmark cases dhrystone_v2.2 and whetstone_v1.2 are added in this release.

• In Nuclei Studio IDE, if you are importing this Nuclei SDK 0.8.0 as a NPK package, you will be able to see
following versions in new project wizard:

– Dhrystone Benchmark, Version 2.1: located in application/baremetal/benchmark/dhrystone,
previous existed version

– Whetstone Benchmark, Roy Longbottom Version: located in application/baremetal/benchmark/
whetstone, previous existed version

– Dhrystone Benchmark, Version 2.2: located in application/baremetal/benchmark/
dhrystone_v2.2, new introduced version

– Whetstone Benchmark, Netlib Version 1.2: located in application/baremetal/benchmark/
whetstone_v1.2, new introduced version

This is release version 0.8.0 of Nuclei SDK.

• NMSIS

– Fix wrong macro PLIC_GetThreshold & PLIC_GetThreshold_S implementation for
core_feature_plic.h

– Add MTIME_SRW_CTRL bitfields in SysTimer_Type structure for core_feature_timer.h

– Optimize ECLIC API for better code performance in core_feature_eclic.h

– Add SSTC support in core_feature_timer.h, a new macro called __SSTC_PRESENT is added

– Update and add more CSR Union types

– Add more CSR macros such shartid csr, worldguard csrs, and related csr bitfield macro

– Add the BENCH_XLEN_MODE macro to enable more accurate cycle and HPM counter measurements for
RV32, when BENCH_XLEN_MODE is enabled, the cycle/instret/time/hpm_counter will be 32 bits for rv32
and 64 bits for rv64.

– Fix return type error of __get_hpm_counter

– Add new APIs to read cycle/instret/time/hpm_counter with XLEN bits:

∗ unsigned long __read_cycle_csr()

143

Nuclei SDK, Release 0.8.0

∗ unsigned long __read_instret_csr()

∗ unsigned long __read_time_csr()

∗ unsigned long __read_hpm_counter(unsigned long idx)

– Fix __clear_core_irq_pending and __clear_core_irq_pending_s implementation in
core_feature_base.h

– Fix __enable_sw_irq_s implementation in core_feature_base.h

– Add PMA(Physical Memory Attribute) APIs for managing attribute type(Device/Non-
Cacheable/Cacheable) of memory regions when __PMA_PRESENT=1

– Fix and update HPM v1 event macro due to Nuclei ISA documentation update in nmsis_bench.h

– Add new PMU v1 and v2 event macros in nmsis_bench.h

– Add flushpipe and fence in each ccm operation API in core_feature_cache.h

– Use 1UL instead of 1 in NMSIS/Core header files to avoid left shift overflow issue

• Application

– Add more application code compile check message for better example requirement explanation

– Add demo_sstc (page 114) to show how to SSTC(S-Mode timer interrupt extension)

– Add demo_smode (page 140) to show how to run rt_thread in S-Mode, it will require TEE and PMP exten-
sion

– Remove demo_spmp application due to hw sPMP upgraded to sMPU and no longer supported,

– please use demo_smpu (page 115) now.

– Add -fno-tree-tail-merge compiler option for threadx RTOS example compiling, which is required
for correct

– compiling

– Fix demo_vnice (page 102) insufficient mask length when vlen > 128

– Add more documentation for demo_dsp (page 97) example

– Optimize smphello (page 99) spinlock usage and update doc for it

– Optimize demo_profiling (page 118) example execution speed on hw from about 5min to 30s by decease
the loop count

– Update demo (page 134) example to use configTICK_TYPE_WIDTH_IN_BITS instead of
configUSE_16_BIT_TICKS

– Add demo_pma (page 132) case to show how to use PMA related API in core_feature_pma.h

– Add demo_smode_plic (page 113) to show how to use PLIC in S-Mode, it will require PLIC and PMP
extension

– Increase freertos timer stack size from 256 to 512 due to timer task still generate vector instruction even
with AUTOVEC=0 (page 37)

– Add two new benchmark cases dhrystone_v2.2 (page 106) and whetstone_v1.2 (page 109) which are the
ones used in linux benchmark

– Update Terapines ZCC dhrystone and coremark options for ZCC v4.0.0 and give better code size

– -Ofast is deprecated in clang, use -O3 -ffast-math

• SoC

144 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Add more documentation about IAR compiler support and porting notes, especially the vector table align-
ment with the MTVT CSR.

– Add nx1000/nx1000f/nx1000fd/ux1000/ux1000f/ux1000fd in supported CPU CORE (page 30) list

– Only enable i/d cache when ecc not present in evalsoc startup asm code to avoid x-state propagation during
rtl simulation

– Fix #endif not placed correctly when XLCFG_TEE=1 and CODESIZE=1 in system_evalsoc.c

– Only initialize ECLIC SMode related registers when TEE really present for evalsoc

– Place default vector entry for vector_table_s when SSTC present for evalsoc

– Add #define _DEFAULT_SOURCE in all SoC’s newlibc stub implementation to use BSD Stan-
dard API when compiler c standard is not gnu c standard -std=gnu23, such as -std=c23,
to fix compiler error error: implicit declaration of function 'TIMEVAL_TO_TIMESPEC'
[-Wimplicit-function-declaration]

– Add __SMODE_PRESENT macro in evalsoc.h to represent s-mode present or not

– Add support for smode clint and plic support for evalsoc

– Add a README.md to introduce evalsoc reference implementation of NMSIS Device Templates in SoC/
evalsoc/README.md

• RTOS

– Add S-Mode RT-Thread support which rely on TEE feature, SSTC feature is preferred

– Update FreeRTOS port to use configTICK_TYPE_WIDTH_IN_BITS instead of
configUSE_16_BIT_TICKS

– Cherry-pick a FreeRTOS incorrect error checking of prvCreateIdleTasks fix, see https://github.com/
FreeRTOS/FreeRTOS-Kernel/commit/a49c35b5dc0f1f521eef3ef993d401af7f26f439

– Add ThreadX module support for both RISC-V 32 and 64 bit

– Add FreeRTOS lazy fp/vector registers save and restore support

• Build System

– Add COMPILE_PREFIX support for TOOLCHAIN (page 28) nuclei_llvm, now both nuclei_llvm
and nuclei_gnu support this variable, you can change it like this COMPILE_PREFIX=/path/to/newgcc/
bin/riscv64-unknown-elf- when do make command

– Add AUTOVEC (page 37) make variable, when AUTOVEC=0, it will disable auto vectorization as much
as possible, this is useful for some application which require no auto vectorization

– Add GDB_UPLOAD_EXTRA_CMDS make variable to execute extra commands after upload elf file to target

– Add run_xlmodel make target for evalsoc to run Nuclei Near Cycle Model Simulation

• Tools

– Add exclusive lock when program fpga for nsdk_cli tools

– Update hpm_parse.py to match hpm v1 and v2 update

• Misc

– Attach url of supply doc about debug with multiple FTDI devices in FAQ section

6.1. V0.8.0 145

https://github.com/FreeRTOS/FreeRTOS-Kernel/commit/a49c35b5dc0f1f521eef3ef993d401af7f26f439
https://github.com/FreeRTOS/FreeRTOS-Kernel/commit/a49c35b5dc0f1f521eef3ef993d401af7f26f439

Nuclei SDK, Release 0.8.0

6.2 V0.7.1

This is release version 0.7.1 of Nuclei SDK.

• NMSIS

– Fix Cache CCM related API compile fail using c++ compiler

– mfp16mode csr is renamed to mmisc_ctl1 due to hw changes

– Update prebuilt NMSIS DSP/NN library to release 1.3.1

• SoC

– Only call EnableSUCCM in _premain_init process when CCM present and S/U mode present defined in
auto generated cpufeature.h

• Misc

– Fix various typos found in source code and doc

– Recommend evalsoc user to run cpuinfo (page 92) to check cpu features it present

– If you want to do openocd rtos aware debug, you need to follow note in commit b7ed34e96

– Evalsoc uart eclic irq maybe not working due to different cpu configuration

6.3 V0.7.0

This is release version 0.7.0 of Nuclei SDK.

• Application

– Add demo_plic case to show how to use PLIC related API in PLIC interrupt mode.

– Add demo_clint_timer case to show how to use systimer in CLINT interrupt mode not ECLIC interrupt
mode.

– Update demo_pmp case to make it suitable for when PMP not present.

– Change download mode from ddr to sram for smp and cache cases to be suitable for some custom soc sdk.

• NMSIS

– Add more ECC related macros for milm_ctl/mdlm_ctl/mcache_ctl csr

– Add more PLIC interrupt API in core_feature_plic.h

– Add more interrupt related API when in plic interrupt mode, see changes in core_feature_base.h

– Bump NMSIS version to 1.3.0 with updated NMSIS Core/DSP/NN header files and prebuilt library

• SoC

– Add Terapines ZCC NPK support, require Nuclei Studio >= 2024.06

– Merge newlib stub code from many files into one file called stubs.c for all SoC supported in Nuclei SDK

– Enable I/D cache for evalsoc before data/bss initialization steps using cpufeature.h for faster data ini-
tialization

– gd32vf103 default CORE name changed from n205 to n203 which are the same in software

– gd32vw55x default CORE name changed from n307fd to n300fd which are the same in software

– evalsoc default CORE name changed from n307fd to n300fd which are the same in software

146 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Add plic interrupt and exception related handling code for evalsoc

– Fix BPU is not enabled during startup for startup code for IAR compiler, which will increase performance
of 600/900/1000 series a lot

• Build System

– Introduce XLCFG_xxxmake variable for evalsoc which is only internally used by Nuclei to overwrite default
cpufeature.h macro definition, which will be useful for some applications such as demo_cidu, demo_cache,
demo_spmp, demo_smpu and demo_smode_eclic

– Introduce ECC_EN make variable for evalsoc which is only internally used by Nuclei to control whether
ECC check is enabled or disabled.

– Add core n200e/n202/n202e and remove n205/n205e/n305/n307/n307fd which can be replaced by
n203/n203e/n300/n300f/n300fd

– Prebuilt IAR projects and workbench are updated due to evalsoc support changes for plic and clint interrupt
modes.

– Add SYSCLK make variable for manually set default SYSTEM_CLOCK macro in evalsoc, it is useful for
CODESIZE=1 case

– Add QEMU_MC_EXTOPT make variable to pass extra Nuclei Qemu -M machine options for evalsoc.

– Add QEMU_CPU_EXTOPT make variable to pass extra Nuclei Qemu -cpu cpu options for evalsoc.

6.4 V0.6.0

This is release version 0.6.0 of Nuclei SDK.

Note:

• Please use Nuclei Studio 2024.06 with this Nuclei SDK 0.6.0.

• There are many changes in this release, so we decide to name it as 0.6.0, not 0.5.1

• This version introduced ThreadX and FreeRTOS-SMP support for Nuclei RISC-V Processors.

• This version introduced a profiling middleware and an example to show code coverage and profiling technol-
ogy using gcov and gprof in Nuclei Studio 2024.06.

• We introduced support for Nuclei 100 series RISC-V CPU, but in seperated Nuclei SDK branches called mas-
ter_n100 or develop_n100, see https://doc.nucleisys.com/nuclei_n100_sdk

• This version introduced support for gd32vw55x chip and Nuclei DLink Board.

• Better Terapines ZCC toolchain integrated in Nuclei SDK and Nuclei Studio, try ZStudio Lite version here
https://www.terapines.com/products/

• Better IAR Workbench support in Nuclei SDK, with Baremetal SMP and FreeRTOS SMP supported.

• Application

– Add ThreadX RTOS example to show how to use ThreadX in SDK.

– Add Nuclei 1000 series benchmark flags for benchmark examples.

– Add demo_vnice example to show how to use Nuclei Vector NICE feature.

– Add demo_profiling example to how to use gprof and gcov in Nuclei Studio.

6.4. V0.6.0 147

https://doc.nucleisys.com/nuclei_n100_sdk
https://www.terapines.com/products/

Nuclei SDK, Release 0.8.0

– Add smphello, demo_cidu baremetal SMP examples in IAR workbench.

– Add FreeRTOS smpdemo example to show how to use SMP version of FreeRTOS.

– Optimize and fix cpuinfo example for better cpu feature dection.

– Optimize benchmark gcc13 flags to provide better performance.

– Fix wrong ipc calculating for benchmark examples.

– Reset mcycle and minstret when read cycle or instret in benchmark examples.

– Fix dhrystone strcmp_xlcz.S removed by make clean in windows.

– Update benchmark flags for benchmark examples when compiled with Terapines ZCC Toolchain.

– Fix lowpower example no need to use newlib_full library.

• NMSIS

– Update many CSR structure defined in core_feature_base.h such as CSR_MCFGINFO_Type,
CSR_MDLMCTL_Type and CSR_MCACHECTL_Type etc.

– Add __set_rv_cycle and __set_rv_instret API to set cycle and instret csr registers.

– Add CSR_MTLBCFGINFO_Type CSR structure in core_feature_base.h.

– Fix protection type error in PMP/sPMP API.

– Fix wrong CLIC_CLICINFO_VER_Msk and CLIC_CLICINFO_NUM_Msk macro value in
core_feature_eclic.h

– Add __ROR64 in core_compatiable.h.

– Add and update DSP intrinsic APIs in core_feature_dsp.h.

– Add and update Nuclei customized CSRs in riscv_encoding.h.

– Sync NMSIS DSP/NN library 1.2.1

• SoC

– Redesign evalsoc reference SoC support software for better evalsoc and nuclei cpu support, see Usage
(page 66)

– Remove -msave-restore in npk.yml to fix dhrystone benchmark value is low in Nuclei Studio issue.

– No need to get system clock using get_cpu_freq for gd32vf103.

– In npk.yml, when pass -isystem= should be changed to -isystem = as a workaround for Nuclei Studio
to pass correct system include header.

– Update standard c library and arch ext prompt for soc npk.yml for better hints.

– Add gd32vf103c_dlink board support for Nuclei DLink development.

– Fix non-ABS relocation R_RISCV_JAL against symbol ‘_start’ fail for nuclei_llvm toolchain

– Add Nuclei ux1000fd support in both NPK and Makefile based Build System.

– Add support for gd32vw55x SoC which is Gigadevice new Nuclei RISC-V N300 Processor based WiFi
MCU.

– Add SPLITMODE support for evalsoc when evaluate NA class Core.

– Allow custom linker script if npk variable linker_script is not empty.

– Explicit declare asm function in gcc asm code if that part of code is a function, which is required by gprof
plugin in Nuclei Studio.

148 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Clear zc bit for non zc elf in mmsic_ctl csr for cases when cpu is not reset but zc bit is set before.

– Only print CSR value when CSR is present during __premain_init for evalsoc.

– Fix undefined symbol when link cpp for clang __eh_frame_start/__eh_frame_hdr_start/
__eh_frame_end/__eh_frame_hdr_end

– Add LDSPEC_EN, L2_EN and BPU_EN for evalsoc in Makefile based build system to control load spec-
ulative, L2 cache and BPU enable or disable, which is only internally used.

– Move eclic and interrupt and exception initialization from startup asm code into premain c code for evalsoc.

– Optimize cpu startup when ECLIC not present it will not be initialized, which is helpful for CPU without
ECLIC unit.

– evalsoc SystemIRegionInfo variable is removed now, if you want to access to the base address of cpu
internal device, you can use *_BASEADDR, such as __CIDU_BASEADDR.

– Introduce an IAR startup asm code called IAR/startup.S for evalsoc to support SMP boot, and for
SMP stack setup, different IAR linker script is required, see the iar linker script provided in smphello
or freertos/smpdemo.

• Build System

– Now disassemble elf will show no alias instructions

– Add u600*/u900*/ux1000fd into support CORE list

– Update and optimize toolchain support for Terapines ZCC Toolchain, which can provide better performance

– In Build/toolchain/nuclei_gnu.mk, -mmemcpy-strategy=scalar option is replaced by
-mstringop-strategy=scalar in official gcc 14, see https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=
4ae5a7336ac8e1ba57ee1e885b5b76ed86cdbfd5

• RTOS

– Bump FreeRTOS Kernel to V11.1.0

– Bump RTThread Nano to V3.1.5

– Introduce FreeRTOS SMP support for Nuclei RISC-V CPU

– Introduce Eclipse ThreadX v6.4.1 Support for Nuclei RISC-V CPU

• Misc

– Add Zc/Zicond and 1000 series support in SDK CLI script used internally

– Optimize gitlab ci jobs to speedup job execution time and better merge request pipeline check

6.5 V0.5.0

This is release version 0.5.0 of Nuclei SDK, please use it with Nuclei Studio 2023.10119 release.

Note:

• This 0.5.0 version is a big change version for Nuclei SDK, it now support Nuclei Toolchain 2023.10120, which
have gnu toolchain and llvm toolchain in it, gcc version increased to gcc 13, and clang version used is clang 17. It
will no longer support old gcc 10 version, since gcc and clang -march option changed a lot, such as b extension
changed to _zba_zbb_zbc_zbs.

119 https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
120 https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10

6.5. V0.5.0 149

https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=4ae5a7336ac8e1ba57ee1e885b5b76ed86cdbfd5
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=4ae5a7336ac8e1ba57ee1e885b5b76ed86cdbfd5
https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10

Nuclei SDK, Release 0.8.0

• This version also introduced other compiler support such as terapines zcc and IAR compiler. For terap-
ines zcc compiler, please visit https://www.terapines.com/ to contact them for toolchain evaluation, pass
TOOLCHAIN=terapines during make to select terapines zcc compiler. For IAR compiler, please visit https:
//www.iar.com/riscv for IAR workbench evaluation, we provided iar projects to take a try with it.

• This version introduced libncrt v3.0.0 support, which split libncrt library into three parts, you need to take care
when using newer toolchain.

• This version removed demosoc support, please use evalsoc instead.

• This version introduced qemu 8.0 support, old qemu will not be supported.

• This version introduced Nuclei Studio 2023.10 support which introduced llvm toolchain support via npk, so it
can only works with 2023.10 or later version.

• This version required a lot of new npk features introduced in Nuclei Studio 2023.10121, so it can only be imported
as npk package in Nuclei Studio 2023.10122 or later version.

• Application

– Add cpuinfo case to dump nuclei cpu feature

– Add stack check demo to demostrate nuclei stack check feature

– Add support for gcc13/clang17/terapines/iar compiler

– Fix missing break in __set_hpm_event function, take care if you are using this API.

– For different compiler option support, we introduced toolchain_$(TOOLCHAIN).mk file to place
toolchain specified options, see benchmark examples’ Makefile

– Optimize demo_cidu smp case

– Optimize application code and makefile when port for clang, terapines zcc and iar compiler

– Change ARCH_EXT (page 31) makefile comment for demo_dsp when using gcc 13

– Auto choose proper CPU_SERIES and proper optimization flags for benchmark cases

– Optimize whetstone cost to decrease execution time for better ci testing in qemu and fpga

– Add Zc and Xxlcz extension optimization for coremark and dhrystone cases

– Do specical adaption for demo_pmp/demo_spmp for iar compiler which require customized iar linker icf
for this cases

– Optimize benchmark flags when using gcc 13

• NMSIS

– Add bench reset/sample/stop/stat and get usecyc/sumcyc/lpcnt APIs in NMSIS Core

– Add more CSRs such as Zc/Stack Check in riscv_encoding.h

– Rename NMSIS DSP/NN library name to match gcc 13 changes, eg. b -> zba_zbb_zbc_zbs, so the
library name changed a lot

– Add IAR compiler support in NMSIS Core

– No more bitmanip extension intrinsic header <rvintrin.h> for gcc13

– Fix __RV_CLAMP macro and add __MACHINE/SUPERVISOR/USER_INTERRUPT macros

– Add __get_hart_index and SysTimer_GetHartID and modify __get_hart_id API
121 https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
122 https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10

150 Chapter 6. Changelog

https://www.terapines.com/
https://www.iar.com/riscv
https://www.iar.com/riscv
https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10

Nuclei SDK, Release 0.8.0

– In <Device.h>, we introduced __HARTID_OFFSET and __SYSTIMER_HARTIDmacro to represent timer hart
index relation with cpu hartid for AMP SoC

– Update NMSIS Core/DSP/NN header files to NMSIS 1.2.0123

– Update NMSIS DSP/NN prebuilt library to v1.2.0, and added F16 prebuilt library

• SOC

– CAUTION: Demosoc support is removed since evalsoc is the successor, please use evalsoc now.

– Set RUNMODE_CCM_EN macro when CCM_EN make variable passed and allow __CCM_PRESENT
overwrite by RUNMODE_CCM_EN macro

– Enable __CIDU_PRESENT macro passed via compiler option

– Update cpu startup asm code to fix clang compile issue such as STB_WEAK warning and non-ABS relo-
cation error

– Update cpu startup asm code to support zcmt jump table

– Update gnu linker files to support zcmt extension

– Update gnu linker files to fix 2 byte gap issue, and align section to 8bytes and reorg sections

– Update openocd configuration files to support openocd new version

– Make metal_tty_putc/getc with __USED attribute to avoid -flto build and link fail

– Add startup and exception code and iar linker icf files for IAR compiler support

– Add new macros __HARTID_OFFSET and __SYSTIMER_HARTID in evalsoc.h

– Add HARTID_OFFSET make variable to control hartid offset for evalsoc

– Boot hartid check no longer only compare lower 8bits for evalsoc

– Currently IAR compiler support is only for single core support, smp support is not yet ready and need to
use in IAR workbench

– Update Nuclei Studio NPK files to support both gcc and llvm toolchain support, this require Nuclei Studio
2023.10124, which is incompatiable with previous IDE version.

• Build System

– Fix semihost not working when link with semihost library

– Add support for gcc 13, clang 17, terapines zcc toolchain using TOOLCHAIN (page 28) make vari-
able, eg. TOOLCHAIN=nuclei_gnu for gnu gcc toolchain, TOOLCHAIN=nuclei_llvm for llvm toolchain,
TOOLCHAIN=terapines for terapines zcc toolchain

– Add support for libncrt v3.0.0, which spilt libncrt into 3 parts, the c library part, fileops part, and heapops
part, so NCRTHEAP (page 41) and NCRTIO (page 41) makefile variable are added to support new version
of libncrt, about upgrading libncrt, please check STDCLIB (page 39)

– To support both gcc, clang, zcc, now we no longer use --specs=nano.specs like --specs= gcc only
options, since clang don’t support it, we directly link the required libraries according to the library type you
want to use in Makefile, group all the required libraries using --start-group archives --end-group
of linker option, see https://sourceware.org/binutils/docs/ld/Options.html, but when using Nuclei Studio,
the Eclipse CDT based IDE didn’t provided a good way to do library group, here is an issue tracking it, see
https://github.com/eclipse-embed-cdt/eclipse-plugins/issues/592

123 https://github.com/Nuclei-Software/NMSIS/releases/tag/1.2.0
124 https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10

6.5. V0.5.0 151

https://github.com/Nuclei-Software/NMSIS/releases/tag/1.2.0
https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
https://github.com/Nuclei-Software/nuclei-studio/releases/tag/2023.10
https://sourceware.org/binutils/docs/ld/Options.html
https://github.com/eclipse-embed-cdt/eclipse-plugins/issues/592

Nuclei SDK, Release 0.8.0

∗ And also now we defaultly enabled -nodefaultlibs option to not use any standard system libraries
when linking, so we need to specify the system libraries we want to use during linking, which is the
best way to support both gcc and clang toolchain.

– When using libncrt library, this is no need to link with other libgcc library, c library or math library, such as
gcc libgcc library(-lgcc), newlib c library(-lc/-lc_nano) and math library(-lm), the c and math features
are also provided in libncrt library

– When using Nuclei Studio with imported Nuclei SDK NPK package, you might meet with undefined ref-
erence issue during link

– The use of ARCH_EXT (page 31) is changed for new toolchain, eg. you can’t pass ARCH_EXT=bp to repre-
sent b/p extension, instead you need to pass ARCH_EXT=_zba_zbb_zbc_zbs_xxldspn1x

– Show CC/CXX/GDB when make showflags

– Add u900 series cores support

– No longer support gd32vf103 soc run on qemu

– Add extra -fomit-frame-pointer -fno-shrink-wrap-separate options for Zc extension to enable
zcmp instruction generation

– Extra CPU_SERIES macro is passed such (200/300/600/900) during compiling for benchmark examples

– When you want to select different nmsis library arch, please use NMSIS_LIB_ARCH (page 38) make vari-
able, see demo_dsp as example

• Tools

– A lot of changes mainly in nsdk cli configs have been made to remove support of demosoc, and change it
to evalsoc

– A lot of changes mainly in nsdk cli configs have been made to support newer ARCH_EXT (page 31) variable
format

– Add llvm ci related nsdk cli config files

– Add Zc/Xxlcz fpga benchmark config files

– Support qemu 8.0 in nsdk cli tools

– Update configurations due to application adding and updating

• RTOS

– Add freertos/ucosii/rtthread porting code for IAR compiler

– Enable vector when startup new task for rtos for possible execute rvv related instruction exception

• Misc

– Change gitlab ci to use Nuclei Toolchain 2023.10125

– Add IAR workbench workspace and projects for evalsoc, so user can quickly evaluate IAR support in IAR
workbench

125 https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10

152 Chapter 6. Changelog

https://github.com/riscv-mcu/riscv-gnu-toolchain/releases/tag/nuclei-2023.10

Nuclei SDK, Release 0.8.0

6.6 V0.4.1

This is release version 0.4.1 of Nuclei SDK.

• Application

– Add demo_cidu to demo cidu feature of Nuclei RISC-V Processor

– Add demo_cache to demo ccm feature of Nuclei RISC-V Processor

– Optimize demo_nice for rv64

– Fix compile error when -Werror=shadow

– Update helloworld and smphello due to mhartid changes

• NMSIS

– Bump NMSIS to 1.1.1 release version, NMSIS DSP/NN prebuilt libraries are built with 1.1.1 release.

– Add CIDU support via core_feature_cidu.h, and __CIDU_PRESENT macro is required in <Device>.h to
represent CIDU present or not

– Add macros of HPM m/s/u event enable, events type, events idx

– Fix define error of HPM_INIT macro

– Due to mhartid csr update for nuclei subsystem reference design, two new API added called
__get_hart_id and __get_cluster_id

∗ mhartid csr is now used to present cluster id and hart id for nuclei subsystem reference design

∗ bit 0-7 is used for hart id in current cluster

∗ bit 8-15 is used for cluster id of current cluster

∗ for normal nuclei riscv cpu design, the mhartid csr is used as usual, but in NMSIS Core, we only take
lower 8bits in use cases like systimer, startup code to support nuclei subsystem

• Build System

– Add semihost support in build system via SEMIHOST make variable, if SEMIHOST=1, will link semihost
library, currently only works with newlibc library, not working with libncrt

– Add support for compile cpp files with suffix like .cc or .CC

– Remove --specs=nosys.specs compile options used during compiling, since we have implement almost
all necessary newlibc stub functions, no need to link the nosys version, which will throw warning of link
with empty newlibc stub functions.

• SoC

– Fix missing definition of BOOT_HARTID in startup_demosoc.S

– Update demosoc and evalsoc interrupt id and handler definition for CIDU changes

– Add __CIDU_PRESENT macro to control CIDU present or not in demosoc.h and evalsoc.h which is the
<Device>.h

– Add uart status get and clear api for evalsoc and demosoc, which is used by cidu demo

– Add semihost support for all SoCs, currently only works with newlib, SEMIHOST=1 control semihost support

– Update openocd configuration file to support semihosting feature

– Add extra run/restart command for openocd debug configuration in smp debug in npk for Nuclei Studio

– Update smp/boot flow to match mhartid csr update

6.6. V0.4.1 153

Nuclei SDK, Release 0.8.0

– BOOT_HARTID is the choosen boot hart id in current cluster, not the full mhartid register value, for
example, it the mhartid csr register is 0x0101, and the BOOT_HARTID should be set to 1, if you want
hart 1 to be boot hart

– Update and add more newlib stub functions in demosoc/evalsoc/gd32vf103 SoC’s newlibc stub implemen-
tation, since we are no longer compile with --specs=nosys.specs

• CI

– Add demo_cidu and demo_cache in ci configuration files, but expect it to run fail when run in qemu

– Don’t check certificate when download tool

• Tools

– Modify openocd configuration file in nsdk_utils.oy support win32 now

– Add new feature to generate cpu json when knowing cpu arch in nsdk_runcpu.py script

– Add runresult_diff.py script to compare the difference of two runresult.xlsx.csvtable.json files, useful when
do benchmark difference check

– Add --uniqueid <id> option for nsdk cli tools

6.7 V0.4.0

This is release version 0.4.0 of Nuclei SDK.

• Application

– Add demo_pmp (page 122) application to demostrate pmp feature.

– Add demo_spmp (page 115) application to demostrate smode pmp feature, spmp is present when TEE
feature is enabled.

– Add demo_smode_eclic (page 110) application to demonstrate ECLIC interrupt with TEE feature of Nuclei
Processor.

– Changed test/core test case due to EXC_Frame_Type struct member name changes.

– Fix XS bit set bug in demo_nice application.

– Add return value in smphello application.

• NMSIS

– Add __CTZ count trailing zero API in core_compatiable.h

– Add __switch_mode switch risc-v privilege mode API in core_feature_base.h

– Add __enable_irq_s, __disable_irq_s smode irq control(on/off) API in core_feature_base.h

– Add __set_medeleg exception delegation API in core_feature_base.h

– Update and add smode eclic related API in core_feature_eclic.h only present when TEE_PRESENT=1

– Optimize APIs of PMP and add __set_PMPENTRYx and __get_PMPENTRYx API for easily PMP configu-
ration in core_feature_pmp.h

– Add spmp related APIs for smode pmp hardware feature when __SPMP_PRESENT=1

– Add per-hart related APIs for systimer such as SysTimer_SetHartCompareValue,
SysTimer_SetHartSWIRQ and etc in core_feature_timer.h, this is mainly needed when configure
timer in smode per hart

154 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Add TEE related csr macros in riscv_encoding.h

– Add iregion offset macros and N3/VP mask in riscv_encoding.h and use it in demosoc/evalsoc implemen-
tation.

– Add ICachePresent/DCachePresent API

– Don’t sub extra cost for BENCH_xxx API

– Update NMSIS Core/DSP/NN and prebuilt library to version 1.1.0

• Build System

– Add intexc_<Device>_s.S asm file into compiling for evalsoc and demosoc

– Show ARCH_EXT information when run make info

– Don’t specify elf filename when run gdb, only specify it when do load to avoid some gdb internal error

– Add BOOT_HARTID and JTAGSN support, which need to be done in SoC support code and build system

• SoC

– Add smode interrupt and exception handling framework for evalsoc and demosoc, for details see code
changes.

∗ A new section called .vector_s is added(required in linker script) to store smode vector table which
is initialized in system_<Device>.c

∗ A new intexc_<Device>_s.S asm source file is added to handle s-mode interrupt and exception

∗ A default smode exception register and handling framework is added in system_<Device>.c

∗ API Changes: Exception_DumpFrame parameters changed to add mode passing in
system_<Device>.c/h

∗ API Changes: EXC_Frame_Type struct member mcause/mepc changed to cause/epc in
system_<Device>.c/h

– Print \0 instead of \r when do simulation exit for better integration in Nuclei Studio QEMU simulation.

– Add clock stub function for libncrt library in demosoc/evalsoc/gd32vf103 SoC support software.

– Add sram download mode for evalsoc/demosoc, for details directly check the linker script

– Change default __ICACHE_PRESENT/__DCACHE_PRESENT to 1 for evalsoc/demosoc, when eval-
soc/demosoc startup, it will enable i/d cache if it really present.

– Update openocd configuration files to remove deprecated command which might not be support in future

– Merge smp and single core openocd config into one configuration for evalsoc and demosoc

– Add BOOT_HARTID support for evalsoc and demosoc, which is used to specify the boot hartid, used
together with SMP can support SMP or AMP run mode

– Add JTAGSN support to specify a unified hummingbird jtag debugger via adapter serial

– For AMP support, we can work together with Nuclei Linux SDK, see https://github.com/Nuclei-Software/
nsdk_ampdemo

– Add NPK support for SMP/AMP working mode, and sram download mode

• CI

– Start to use Nuclei QEMU/Toolchain/OpenOCD 2022.12 in daily ci for gitlab runner

• Tools

– Add httpserver.py tool to create a http server on selected folder, good to preview built documentation.

6.7. V0.4.0 155

https://github.com/Nuclei-Software/nsdk_ampdemo
https://github.com/Nuclei-Software/nsdk_ampdemo

Nuclei SDK, Release 0.8.0

– Fix many issues related to nsdk_cli scripts when integrated using fpga hardware ci flow.

– Support extra parsing benchmark python script for nsdk_cli tools, see 5f546fa0

– Add nsdk_runcpu.py tool to run fpga baremetal benchmark

• Documentation

– Add make preview to preview build documentation.

6.8 V0.3.9

This is release version 0.3.9 of Nuclei SDK.

• Application

– Add lowpower application to demonstrate low-power feature of Nuclei Processor.

– Update demo_nice application due to RTL change in cpu.

– Change dhrystone compiling options to match better with Nuclei CPU IP.

• NMSIS

– Update riscv_encoding.h, a lot of changes in the CSRs and macros, VPU are added.

– Add nmsis_bench.h, this header file will not be included in nmsis_core.h, if you want to use it, please
directly include in your source code. It is used to help provide NMSIS benchmark and high performance
monitor macro helpers.

– Add hpm related API in core_feature_base.h

– Add enable/disable vector API only when VPU available

• Build System

– Fix upload program the pc is not set correctly to _start when cpu is reset in flash programming mode.

– Add run_qemu_debug/run_xlspike_rbb/run_xlspike_openocd make targets

• SoC

– Add npk support for smp, required to update ide plugin in Nuclei Studio 2022.04. And also a new version
of qemu is required, if you want to run in qemu.

– Add evalsoc in Nuclei SDK, evalsoc is a new evaluation SoC for Nuclei RISC-V Core, for next gener-
ation of cpu evaluation with iregion feature support. demosoc will be deprecated in future, when all our
CPU IP provide iregion support.

– Important: A lot of changes are made to linker script of SDK.

∗ rodata are placed in data section for ilm/flash/ddrdownload mode, but placed in text section for flashxip
download mode.

∗ For ilm download mode, if you want to make the generated binary smaller, you can change RE-
GION_ALIAS of DATA_LMA from ram to ilm.

∗ Add _text_lma/_text/_etext to replace _ilm_lma/_ilm/_eilm, and startup code now using
new ld symbols.

∗ Use REGION_ALIAS to make linker script portable

∗ Linker scripts of gd32vf103/evalsoc/demosoc are all changed.

– FPU state are set to initial state when startup, not previous dirty state.

156 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Vector are enabled and set to initial state when startup, when vector are enabled during compiling.

– For latest version of Nuclei CPU IP, BPU cold init need many cycles, so we placed bpu enable before enter
to main.

6.9 V0.3.8

This is release version 0.3.8 of Nuclei SDK.

• Application

– Add smphello application to test baremetal smp support, this will do demonstration to boot default 2 core
and each hart print hello world.

• NMSIS

– Some macros used in NMSIS need to expose when DSP present

– nmsis_core.h might be included twice, it might be included by <Device.h> and <riscv_math.h>

• Build

– Add SYSCLK and CLKSRC make variable for gd32vf103 SoC to set system clock in hz and clock source,
such as SYSCLK=72000000 CLKSRC=hxtal

– Exclude source files using EXCLUDE_SRCS make variable in Makefile

– C_SRCS/ASM_SRCS/CXX_SRCS now support wildcard pattern

– USB_DRV_SUPPORT in gd32vf103 is removed, new USB_DRIVER is introduced, USB_DRIVER=device/
host/both to choose device, host or both driver code.

– SMP, HEAPSZ and STACKSZ make variable are introduced to control stack/heap size and smp cpu count used
in SDK

• SoC

– Add libncrt 2.0.0 support for demosoc and gd32vf103, libncrt stub functions need to be adapted, see
2e09b6b0 and 2e09b6b0

– Fix ram size from 20K to 32K for gd32vf103v_eval and gd32vf103v_rvstar

– Change demosoc eclic/timer baseaddr to support future cpu iregion feature, see eab28320d and 18109d04

– Adapt system_gd32vf103.c to support control system clock in hz and clock source via macro SYS-
TEM_CLOCK and CLOCK_USING_IRC8M or CLOCK_USING_HXTAL

– Merge various changes for gd32vf103 support from gsauthof@github, see PR #37, #38, #40

– Remove usb config header files and usb config source code for gd32vf103

– Change gd32vf103 linker scripts to support HEAPSZ and STACKSZ

– Change demosoc linker scripts to support HEAPSZ, STACKSZ and SMP

– Add baremetal SMP support for demosoc, user can pass SMP=2 to build for 2 smp cpu.

• Tools

– Record more flags in nsdk_report.py such as NUCLEI_SDK_ROOT, OPENOCD_CFG and LINKER_SCRIPT.

– Fix nsdk_report.py generated runresult.xls file content is not correct when some application failed

– Add benchmark c standard script in tools/misc/barebench

– Change to support SMP variable

6.9. V0.3.8 157

Nuclei SDK, Release 0.8.0

• OS

– RT_HEAP_SIZE defined in cpuport.c is small, need to be 2048 for msh example when RT_USING_HEAP
is enabled

– Application can define RT_HEAP_SIZE in rtconfig.h to change the size

For detailed changes, please check commit histories since 0.3.7 release.

6.10 V0.3.7

This is release version 0.3.7 of Nuclei SDK.

• Application

– CAUTION: Fix benchmark value not correct printed when print without float c library, which means the
CSV printed value in previous release is not correct, please take care

– Add DHRY_MODE variable to support different dhrystone run options in dhrystone benchmark, ground,
inline and best are supported

• NMSIS

– Bump to v1.0.4

– Add B-extension support for NMSIS

– Fix various issues reported in github

• Build - add showflags target to show compiling information and flags - add showtoolver target to show tool
version used

• SoC

– Change all un-registered interrupt default handler to default_intexc_handler, which means user need
to register the interrupt handler using ECLIC_SetVector before enable it.

– Add RUNMODE support only in demosoc, internal usage

– Add jlink debug configuration for gd32vf103 soc

• Tools

– Update nsdk_report.py script to support generate benchmark run result in excel.

– Add ncycm cycle model runner support in nsdk_bench.py

– Add nsdk_runner.py script for running directly on different fpga board with feature of programing fpga
bitstream using vivado

For detailed changes, please check commit histories since 0.3.6 release.

158 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

6.11 V0.3.6

This is release version 0.3.6 of Nuclei SDK.

• Application

– update coremark benchmark options for n900/nx900, which can provide better score number

– benchmark value will be print in float even printf with float is not supported in c library

– baremetal applications will exit with an return value in main

• NMSIS

– add __CCM_PRESENT macro in NMSIS-Core, if CCM hardware unit is present in your CPU,
__CCM_PRESENT macro need to be set to 1 in <Device>.h

– Fixed mtvec related api comment in core_feature_eclic.h

– Add safely write mtime/mtimecmp register for 32bit risc-v processor

– rearrage #include header files for all NMSIS Core header files

– removed some not good #pragma gcc diagnostic lines in nmsis_gcc.h

• Build

– Add experimental run_xlspike and run_qemu make target support

– SIMU=xlspike or SIMU=qemu passed in make will auto exit xlspike/qemu if main function returned

• SoC

– Add xlspike/qemu auto-exit support for gd32vf103 and demosoc, required next version after Nuclei QEMU
2022.01

For detailed changes, please check commit histories since 0.3.5 release.

6.12 V0.3.5

This is release version 0.3.5 of Nuclei SDK.

Caution:

• This version introduce a lot of new features, and required Nuclei GNU Toolchain 2022.01

• If you want to import as NPK zip package into Nuclei Studio, 2022.01 version is required.

• If you want to have smaller code size for Nuclei RISC-V 32bit processors, please define
STDCLIB=libncrt_small in your application Makefile, or change STDCLIB defined in Build/
Makefile.base to make it available globally.

• Application

– DSP_ENABLE and VECTOR_ENABLE are deprecated now in demo_dsp application, please
use ARCH_EXT to replace it. ARCH_EXT=p equal to DSP_ENABLE=ON, ARCH_EXT=v equal to
VECTOR_ENABLE=ON.

– demo_dsp application no need to set include and libraries for NMSIS DSP library, just use NMSIS_LIB =
nmsis_dsp to select NMSIS DSP library and set include directory.

6.11. V0.3.6 159

Nuclei SDK, Release 0.8.0

– Update coremark compile options for different Nuclei cpu series, currently 900 series options and
200/300/600 series options are provided, and can be selected by CPU_SERIES.

∗ CPU_SERIES=900: the compiler options for Nuclei 900 series will be selected.

∗ otherwise, the compiler options for Nuclei 200/300/600 series will be selected, which is by default for
300

– Fix whetstone application compiling issue when compiled with v extension present

• SoC

– Provide correct gd32vf103.svd, the previous one content is messed up.

– putchar/getchar newlib stub are required to be implemented for RT-Thread porting

– Added support for newly introduced nuclei c runtime library(libncrt).

– Rearrange stub function folder for gd32vf103 and demosoc to support different c runtime library.

– A lot changes happened in link scripts under SoC folder - heap section is added for libncrt, size controlled
by __HEAP_SIZE - heap start and end ld symbols are __heap_start and __heap_end - stub function
sbrk now using new heap start and end ld symbols - tdata/tbss section is added for for libncrt, thread local
storage supported

– For flash download mode, vector table are now placed in .vtable section now instead of .vtable_ilm,
VECTOR_TABLE_REMAPPED macro is still required in DOWNLOAD=flash mode

– flash program algo used in openocd for demosoc changed to nuspi, see changes in openocd_demosoc.cfg

• NMSIS

– Update NMSIS Core/DSP/NN to version 1.0.3, see NMSIS 1.0.3 Changelog126

– Update prebuilt NMSIS DSP/NN library to version 1.0.3 built by risc-v gcc 10.2

– For NMSIS Core 1.0.3, no need to define __RISCV_FEATURE_DSP and __RISCV_FEATURE_VECTOR for
riscv_math.h now, it is now auto-defined in riscv_math_types.h

• OS

– Change RT-Thread porting to support libncrt and newlibc, mainly using putchar and getchar

• Build System

– Introduce STDCLIB (page 39) makefile variable to support different c library.

– NEWLIB and PFLOAT variable is deprecated in this release.

– Introduce ARCH_EXT (page 31) makefile variable to support b/p/v extension.

– Only link -lstdc++ library when using STDCLIB=newlib_xxx

– RISCV_CMODEL variable is added to choose code model, medlow or medany can be chosen, default is
medlow for RV32 otherwise medany for RV64.

– RISCV_TUNE variable is added to select riscv tune model, for Nuclei CPU, we added
nuclei-200-series, nuclei-300-series, nuclei-600-series and nuclei-900-series in
Nuclei RISC-V GNU toolchain >= 2021.12

• Contribution

– Update contribution guide due to runtime library choices provided now.

• NPK
126 https://doc.nucleisys.com/nmsis/changelog.html#v1-0-3

160 Chapter 6. Changelog

https://doc.nucleisys.com/nmsis/changelog.html#v1-0-3

Nuclei SDK, Release 0.8.0

– newlibsel configuration variable changed to stdclib, and is not compatiable.

∗ newlibsel=normal change to stdclib=newlib_full

∗ newlibsel=nano_with_printfloat changed to stdclib=newlib_small

∗ newlibsel=nano changed to stdclib=newlib_nano

∗ stdclib has more options, please see SoC/demosoc/Common/npk.yml

∗ nuclei_archext is added as new configuration variable, see SoC/demosoc/Common/npk.yml

• tools

– generate benchmark values in csv files when running nsdk_bench.py or nsdk_execute.py

– fix xl_spike processes not really killed in linux environment when running nsdk_bench.py

For detailed changes, please check commit histories since 0.3.4 release.

6.13 V0.3.4

This is release version 0.3.4 of Nuclei SDK.

• CI

– Fix gitlab ci fail during install required software

• Build System

– build asm with -x assembler-with-cpp

• Tools

– Fix tools/scripts/nsdk_cli/configs/nuclei_fpga_eval_ci_qemu.json description issue for
dsp enabled build configs

– Generate html report when run tools/scripts/nsdk_cli/nsdk_bench.py

– nsdk_builder.py: modify qemu select cpu args,change p to ,ext=p

• SoC

– For demosoc, if you choose ilm and ddr download mode, then the data section’s LMA is equal to VMA
now, and there will be no data copy for data section, bss section still need to set to zero.

– For demosoc, if you choose ilm and ddr download mode, The rodata section are now also placed in data
section.

• NPK

– add -x assembler-with-cpp in npk.yml for ssp

For detailed changes, please check commit histories since 0.3.3 release.

6.13. V0.3.4 161

Nuclei SDK, Release 0.8.0

6.14 V0.3.3

This is release version 0.3.3 of Nuclei SDK.

• NPK

– Fix NPK issues related to QEMU for demosoc and gd32vf103, and RTOS macro definitions in NPK

– This SDK release required Nuclei Studio 2021.09-ENG1, 2021.08.18 build version

For detailed changes, please check commit histories since 0.3.2 release.

6.15 V0.3.2

This is release version 0.3.2 of Nuclei SDK.

• Build

– Important changes about build system:

∗ The SoC and RTOS related makefiles are moving to its own folder, and controlled By build.mk inside
in in the SoC/<SOC> or OS/<RTOS> folders.

∗ Middlware component build system is also available now, you can add you own middleware or library
into Components folder, such as Components/tjpgd or Components/fatfs, and you can include
this component using make variable MIDDLEWARE in application Makefile, such as MIDDLEWARE :=
fatfs, or MIDDLEWARE := tjpgd fatfs.

∗ Each middleware component folder should create a build.mk, which is used to control the component
build settings and source code management.

∗ An extra DOWNLOAD_MODE_STRING macro is passed to represent the DOWNLOAD mode string.

∗ In startup_<Device>.S now, we don’t use DOWNLOAD_MODE to handle the vector table location,
instead we defined a new macro called VECTOR_TABLE_REMAPPED to stand for whether the vector ta-
ble’s vma != lma. If VECTOR_TABLE_REMAPPED is defined, the vector table is placed in .vtable_ilm,
which means the vector table is placed in flash and copy to ilm when startup.

– Change openocd --pipe option to -c "gdb_port pipe; log_output openocd.log"

– Remove -ex "monitor flash protect 0 0 last off"when upload or debug program to avoid error
when openocd configuration file didn’t configure a flash

– Add cleanall target in <NUCLEI_SDK_ROOT>/Makefile, you can clean all the applications defined
by EXTRA_APP_ROOTDIRS variable

– Fix size target of build system

• Tools

– Add nsdk_cli tools in Nuclei SDK which support run applications

∗ tools/scripts/nsdk_cli/requirements.txt: python module requirement file

∗ tools/scripts/nsdk_cli/configs: sample configurations used by scripts below

∗ tools/scripts/nsdk_cli/nsdk_bench.py: nsdk bench runner script

∗ tools/scripts/nsdk_cli/nsdk_execute.py: nsdk execute runner script

• SoC

162 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

– Add general bit operations and memory access APIs in <Device>.h, eg. _REG32(p, i),
FLIP_BIT(regval, bitofs)

– DOWNLOAD_MODE_xxx macros are now placed in <Device>.h, which is removed from riscv_encoding.
h, user can define different DOWNLOAD_MODE_xxx according to its device/board settings.

– DOWNLOAD_MODE_STRING are now used to show the download mode string, which should be passed eg.
-DOWNLOAD_MODE_STRING=\"flash\", it is used in system_<Device>.c

– DOWNLOAD_MODE_xxx now is used in startup_<Device>.S to control the vector table location, instead a
new macro called VECTOR_TABLE_REMAPPED is used, and it should be defined in SoC/<SOC>/build.mk
if the vector table’s LMA and VMA are different.

• NMSIS

– Bump NMSIS to version 1.0.2

• OS

– Fix OS task switch bug in RT-Thread

6.16 V0.3.1

This is official version 0.3.1 of Nuclei SDK.

Caution:

• We are using demosoc to represent the Nuclei Evaluation SoC for customer to replace the old name hbird.

• The hbird SoC is renamed to demosoc, so the SoC/hbird folder is renamed to SoC/demosoc, and the
SoC/hbird/Board/hbird_eval is renamed to SoC/demosoc/Board/nuclei_fpga_eval.

• SoC

– board: Add support for TTGO T-Display-GD32, contributed by tuupola127

– Add definitions for the Interface Association Descriptor of USB for GD32VF103, contributed by micha-
hoiting128.

– IMPORTANT: hbird SoC is renamed to demosoc, and hbird_eval is renamed to nuclei_fpga_eval

∗ Please use SOC=demosoc BOARD=nuclei_fpga_eval to replace SOC=hbird BOARD=hbird_eval

∗ The changes are done to not using the name already used in opensource Hummingbird E203 SoC.

∗ Now demosoc is used to represent the Nuclei Demo SoC for evaluation on Nuclei FPGA evaluation
Board(MCU200T/DDR200T)

• Documentation

– Update msh application documentation

– Add basic documentation for TTGO T-Display-GD32

– Add Platformio user guide(written in Chinese) link in get started guide contributed by Maker Young

• Application

– Increase idle and finsh thread stack for RT-Thread, due to stack size is not enough for RISC-V 64bit
127 https://github.com/tuupola
128 https://github.com/michahoiting

6.16. V0.3.1 163

https://github.com/tuupola
https://github.com/michahoiting
https://github.com/michahoiting

Nuclei SDK, Release 0.8.0

– Set rt-thread example tick hz to 100, and ucosii example tick hz to 50

• Build

– Format Makefile space to tab

– Add $(TARGET).dasm into clean targets which are missing before

• Code style

– Format source files located in application, OS, SoC, test using astyle tool

6.17 V0.3.0

This is official version 0.3.0 of Nuclei SDK.

• SoC

– Add more newlib stub functions for all SoC support packages

– Dump extra csr mdcause in default exception handler for hbird

– Add Sipeed Longan Nano as new supported board

– Add gd32vf103c_longan_nano board support, contributed by tuupola129 and RomanBuchert130

• Documentation

– Add demo_nice application documentation

– Add msh application documentation

– Update get started guide

– Add gd32vf103c_longan_nano board Documentation

– Update board documentation structure levels

• Application

– Cleanup unused comments in dhrystone

– Add new demo_nice application to show Nuclei NICE feature

– Add new msh application to show RT-Thread MSH shell component usage

• NMSIS

– Fix typo in CLICINFO_Type._reserved0 bits

– Fix __STRBT, __STRHT, __STRT and __USAT macros

• OS

– Add msh component source code into RT-Thread RTOS source code

– Add rt_hw_console_getchar implementation

• Build

– Add setup.ps1 for setting up environment in windows powershell
129 https://github.com/tuupola
130 https://github.com/RomanBuchert

164 Chapter 6. Changelog

https://github.com/tuupola
https://github.com/RomanBuchert

Nuclei SDK, Release 0.8.0

6.18 V0.2.9

This is official version 0.2.9 of Nuclei SDK.

• SoC

– Remove ftdi_device_desc "Dual RS232-HS" line in openocd configuration.

Note: Newer version of RVSTAR and Hummingbird Debugger have changed the FTDI description from
“Dual RS232-HS” to “USB <-> JTAG-DEBUGGER”, to be back-compatiable with older version, we just
removed this ftdi_device_desc "Dual RS232-HS" line. If you want to select specified JTAG, you can
add this ftdi_device_desc according to your description.

– Fix typos in system_<Device>.c

– Fix gpio driver implementation bugs of hbird

– Enable more CSR(micfg_info, mdcfg_info, mcfg_info) show in gdb debug

• Documentation

– Add more faqs

• Build System

– Remove unnecessary upload gdb command

– Remove upload successfully message for make upload

6.19 V0.2.8

This is the official release version 0.2.8 of Nuclei SDK.

• SoC

– Fixed implementation for _read newlib stub function, now scanf can be used correctly for both gd32vf103
and hbird SoCs.

• Misc

– Update platformio package json file according to latest platformio requirements

6.20 V0.2.7

This is the official release version 0.2.7 of Nuclei SDK.

• OS

– Fix OS portable code, configKERNEL_INTERRUPT_PRIORITY should set to default 0, not 1. 0 is the
lowest abs interrupt level.

• Application

– Fix configKERNEL_INTERRUPT_PRIORITY in FreeRTOSConfig.h to 0

• NMSIS

– Change timer abs irq level setting in function SysTick_Config from 1 to 0

6.18. V0.2.9 165

Nuclei SDK, Release 0.8.0

6.21 V0.2.6

This is the official release version 0.2.6 of Nuclei SDK.

• Application

– Fix typo in rtthread demo code

– Update helloworld application to parse vector extension

• NMSIS

– Update NMSIS DSP and NN library built using NMSIS commit 3d9d40ff

• Documentation

– Update quick startup nuclei tool setup section

– Update build system documentation

– Fix typo in application documentation

6.22 V0.2.5

This is the official release version 0.2.5 of Nuclei SDK.

This following changes are maded since 0.2.5-RC1.

• SoC

– For SOC=hbird, in function _premain_init of system_hbird.c, cache will be enable in following
cases:

∗ If __ICACHE_PRESENT is set to 1 in hbird.h, I-CACHE will be enabled

∗ If __DCACHE_PRESENT is set to 1 in hbird.h, D-CACHE will be enabled

• Documentation

– Fix several invalid cross reference links

• NMSIS

– Update and use NMSIS 1.0.1

6.23 V0.2.5-RC1

This is release 0.2.5-RC1 of Nuclei SDK.

• Documentation

– Fix invalid links used in this documentation

– Rename RVStar to RV-STAR to keep alignment in documentation

• NMSIS

– Update and use NMSIS 1.0.1-RC1

– Add NMSIS-DSP and NMSIS-NN library for RISC-V 32bit and 64bit

– Both RISC-V 32bit and 64bit DSP instructions are supported

166 Chapter 6. Changelog

Nuclei SDK, Release 0.8.0

• SoC

– All startup and system init code are adapted to match design changes of NMSIS-1.0.1-RC1

∗ _init and _fini are deprecated for startup code, now please use _premain_init and _postmain_fini in-
stead

∗ Add DDR download mode for Hummingbird SoC, which downloaded program into DDR and execute
in DDR

6.24 V0.2.4

This is release 0.2.4 of Nuclei SDK.

• Application

– Upgrade the demo_dsp application to a more complicated one, and by default, DSP_ENABLE is changed
from OFF to ON, optimization level changed from O2 to no optimization.

• SoC

– Update openocd configuration file for Hummingbird FPGA evaluation board, If you want to use 2-wire
mode of JTAG, please change ftdi_oscan1_mode off in openocd_hbird.cfg to ftdi_oscan1_mode
on.

– Add delay_1ms function in all supported SoC platforms

– Fix bugs found in uart and gpio drivers in hbird SoC

– Move srodata after sdata for ILM linker script

– Change bool to BOOL to avoid cpp compiling error in gd32vf103

– Fix adc_mode_config function in gd32vf103 SoC

• Build System

– Add GDB_PORT variable in build system, which is used to specify the gdb port of openocd and gdb when
running run_openocd and run_gdb targets

– Add Nuclei N/NX/UX 600 series core configurations into Makefile.core

– Add -lstdc++ library for cpp application

– Generate hex output for dasm target

– Optimize Makefile to support MACOS

6.25 V0.2.3

This is release 0.2.3 of Nuclei SDK.

• OS

– Add RT-Thread 3.1.3 as a new RTOS service of Nuclei SDK, the kernel source code is from RT-Thread
Nano project.

– Update UCOSII source code from version V2.91 to V2.93

– The source code of UCOSII is fetched from https://github.com/SiliconLabs/uC-OS2/

6.24. V0.2.4 167

https://github.com/SiliconLabs/uC-OS2/

Nuclei SDK, Release 0.8.0

– Warning: Now for UCOSII application development, the app_cfg.h, os_cfg.h and app_hooks.c are
required, which can be also found in https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template

• Application

– Add RT-Thread demo application.

– Don’t use the get_cpu_freq function in application code, which currently is only for internal usage, and
not all SoC implementations are required to provide this function.

– Use SystemCoreClock to get the CPU frequency instead of using get_cpu_freq() in whetstone ap-
plication.

– Update UCOSII applications due to UCOSII version upgrade, and application development for UCOSII
also required little changes, please refer to UCOSII (page 88)

– Fix time_in_secs function error in coremark, and cleanup coremark application.

• Documentation

– Add documentation about RT-Thread and its application development.

– Update documentation about UCOSII and its application development.

– Update coremark application documentation.

• Build System

– Add build system support for RT-Thread support.

– Build system is updated due to UCOSII version upgrade, the OS/UCOSII/cfg folder no longer existed, so
no need to include it.

• SoC

– Update SoC startup and linkscript files to support RT-Thread

• Misc

– Add SConscript file in Nuclei SDK root, this file is used by RT-Thread package.

6.26 V0.2.2

This is release 0.2.2 of Nuclei SDK.

• OS

– Update UCOSII portable code

– Now both FreeRTOS and UCOSII are using similar portable code, which both use SysTimer Interrupt
and SysTimer Software Interrupt.

• Documentation

– Update documentation about RTOS

168 Chapter 6. Changelog

https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template

Nuclei SDK, Release 0.8.0

6.27 V0.2.1

This is release 0.2.1 of Nuclei SDK.

• Build System

– Add extra linker options -u _isatty -u _write -u _sbrk -u _read -u _close -u _fstat -u
_lseek in Makefile.conf to make sure if you pass extra -flto compile option, link phase will not fail

• Documentation

– Add documentation about how to optimize for code size in application development, using demo_eclic as
example.

• OS

– Update FreeRTOS to version V10.3.1

– Update FreeRTOS portable code

• NMSIS

– Update NMSIS to release v1.0.0-beta1

6.28 V0.2.0-alpha

This is release 0.2.0-alpha of Nuclei SDK.

• Documentation

– Initial verison of Nuclei SDK documentation

– Update Nuclei-SDK README.md

• Application

– Add demo_eclic application

– Add demo_dsp application

– timer_test application renamed to demo_timer

• Build System

– Add comments for build System

– Small bug fixes

• NMSIS

– Change NMSIS/Include to NMSIS/Core/Include

– Add NMSIS/DSP and NMSIS/NN header files

– Add NMSIS-DSP and NMSIS-NN pre-built libraries

6.27. V0.2.1 169

Nuclei SDK, Release 0.8.0

6.29 V0.1.1

This is release 0.1.1 of Nuclei SDK.

Here are the main features of this release:

• Support Windows and Linux development in command line using Make

• Support development using PlatformIO, see https://github.com/Nuclei-Software/platform-nuclei

• Support Humming Bird FPGA evaluation Board and GD32VF103 boards

– The Humming Bird FPGA evaluation Board is used to run evaluation FPGA bitstream of Nuclei N200,
N300, N600 and NX600 processor cores

– The GD32VF103 boards are running using a real MCU from Gigadevice which is using Nuclei N200
RISC-V processor core

• Support different download modes flashxip, ilm, flash for our FPGA evaluation board

170 Chapter 6. Changelog

https://github.com/Nuclei-Software/platform-nuclei

CHAPTER

SEVEN

FAQ

7.1 Why I can’t download application?

• Case 1: Remote communication error. Target disconnected.: Success.

Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2019-12-12-
→˓07:43)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
Remote communication error. Target disconnected.: Success.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is ``exec'
"monitor" command not supported by this target.
"monitor" command not supported by this target.

Please check whether your driver is installed successfully via replace target upload to run_openocd as the board
user manual described, especially, for RV-STAR and Nuclei Eval SoC Evaluation boards, For windows, you need to
download the HummingBird Debugger Windows Driver from https://nucleisys.com/developboard.php, and install
it.

If still not working, please check whether your JTAG connection is good or your CPU core is OK.

Note: The USB driver might lost when you re-plug the USB port, you might need to reinstall the driver.

• Case 2: bfd requires flen 4, but target has flen 0

bfd requires flen 4, but target has flen 0
"monitor" command not supported by this target.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is `exec'
"monitor" command not supported by this target.
"monitor" command not supported by this target.

bfd is abbreviation for Binary File Descriptor.

This is caused by the target core flen is 0, which means it didn’t have float point unit in it, but your program is compiled
using flen = 4, single point float unit used, which is incompatible, similar cases such as bfd requires flen 8, but
target has flen 4

171

https://nucleisys.com/developboard.php

Nuclei SDK, Release 0.8.0

Just change your CORE to proper core settings and will solve this issue.

For example, if you compile your core with CORE=n300f, just change it to CORE=n300.

• Case 3: bfd requires xlen 8, but target has xlen 4

bfd requires xlen 8, but target has xlen 4
"monitor" command not supported by this target.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is ``exec'
"monitor" command not supported by this target.
"monitor" command not supported by this target.

This issue is caused by the program is a riscv 64 program, but the core is a riscv 32 core, so just change your program
to be compiled using a riscv 32 compile option.

For example, if you compile your core with CORE=ux600, just change it to CORE=n300.

7.2 How to select correct FTDI debugger?

From Nuclei SDK release 0.2.9, the openocd configuration file doesn’t contain ftdi_device_desc131 line by default, so
if there are more than one FTDI debuggers which has the same VID/PID(0x0403/0x6010) as Nuclei Debugger Kit
use, then you might need to add extra ftdi device_desc line in the openocd configuration file to describe the FTDI
device description.

Or you can add extra adapter serial your_serial_no for your debugger, you can check its serial number via
windows FT_PROG tool.

NOTE: for windows, you need to add an extra A to the serial number, eg. your serial number is FT6S9RD6, then this
extra openocd config line should be adapter serial "FT6S9RD6A" for windows.

• For Nuclei FPGA Evaluation Board, you can check the openocd configuration file in
SoC/evalsoc/Board/nuclei_fpga_eval/openocd_evalsoc.cfg.

• For Nuclei RVSTAR Board, you can check the openocd configuration file in
SoC/gd32vf103/Board/gd32vf103v_rvstar/openocd_gd32vf103.cfg.

For more details, please check Debug with multiple FTDI devices132

7.3 Why I can’t download application in Linux?

Please check that whether you have followed the debugger kit manual133 to setup the USB JTAG drivers correctly. The
windows steps and linux steps are different, please take care.

131 http://openocd.org/doc/html/Debug-Adapter-Configuration.html
132 https://doc.nucleisys.com/nuclei_studio_supply/27-debug_with_multiple_ftdi_devices/
133 https://nucleisys.com/developboard.php#ddr200t

172 Chapter 7. FAQ

http://openocd.org/doc/html/Debug-Adapter-Configuration.html
https://doc.nucleisys.com/nuclei_studio_supply/27-debug_with_multiple_ftdi_devices/
https://nucleisys.com/developboard.php#ddr200t

Nuclei SDK, Release 0.8.0

7.4 Why the provided application is not running correctly in my Nuclei
FPGA Evaluation Board?

Please check the following items:

1. Did you program the correct Nuclei Evaluation FPGA bitstream?

2. Did you re-power the board, when you just programmed the board with FPGA bitstream?

3. Did you choose the right CORE as the Nuclei Evaluation FPGA bitstream present?

4. If your application is RTOS demos, did you run in flashxip mode, if yes, it is expected due to flash speed is
really slow, you’d better try ilm or flash mode.

5. If still not working, you might need to check whether the FPGA bitstream is correct or not?

7.5 Why ECLIC handler can’t be installed using ECLIC_SetVector?

If you are running in FlashXIP download mode, it is expected, since the vector table is placed in Flash area which
can’t be changed during running time.

You can only use this ECLIC_SetVector API when your vector table is placed in RAM which can be changed during
running time, so if you want to write portable application, we recommended you to use exactly the eclic handler names
defined in startup_<device>.S.

7.6 Access to github.com is slow, any workaround?

Access speed to github.com sometimes is slow and not stable, but if you want to clone source code, you can also switch
to use our mirror site maintained in gitee.com.

This mirror will sync changes from github to gitee every 6 hours, that is 4 times a day.

You just need to replace the github to gitee when you clone any repo in Nuclei-Software or riscv-mcu.

For example, if you want to clone nuclei-sdk using command git clone https://github.com/
Nuclei-Software/nuclei-sdk, then you can achieve it by command git clone https://gitee.com/
Nuclei-Software/nuclei-sdk

7.7 `.text’ will not fit in region `ilm’ or `.bss’ will not fit in region `ram’

If you met similar message as below when build an application:

xxx/bin/ld: cifar10.elf section `.text' will not fit in region `ilm'
xxx/bin/ld: cifar10.elf section `.bss' will not fit in region `ram'
xxx/bin/ld: section .stack VMA [000000009000f800,000000009000ffff] overlaps section .bss␣
→˓VMA [00000000900097c0,00000000900144eb]
xxx/bin/ld: region `ilm' overflowed by 43832 bytes
xxx/bin/ld: region `ram' overflowed by 0 bytes

It is caused by the program is too big, our default link script is 64K ILM, 64K DLM, 4M SPIFlash for Nuclei Demo/Eval
SoC.

If your core has bigger ILM or DLM, you can change related linker script file according to your choice.

7.4. Why the provided application is not running correctly in my Nuclei FPGA Evaluation Board?173

Nuclei SDK, Release 0.8.0

For example, if you want to change linker script for evalsoc on nuclei_fpga_eval ilm download mode: ILM to
512K, DLM to 256K, then you can change link script file SoC/evalsoc/Board/nuclei_fpga_eval/Source/
GCC/gcc_evalsoc_ilm.ld as below:

diff --git a/SoC/evalsoc/Board/nuclei_fpga_eval/Source/GCC/gcc_evalsoc_ilm.ld b/SoC/
→˓evalsoc/Board/nuclei_fpga_eval/Source/GCC/gcc_evalsoc_ilm.ld
index 1ac5b90..08451b3 100644
--- a/SoC/evalsoc/Board/nuclei_fpga_eval/Source/GCC/gcc_evalsoc_ilm.ld
+++ b/SoC/evalsoc/Board/nuclei_fpga_eval/Source/GCC/gcc_evalsoc_ilm.ld
@@ -28,8 +28,8 @@ ENTRY(_start)
MEMORY
{

- ilm (rxa!w) : ORIGIN = 0x80000000, LENGTH = 64K
- ram (wxa!r) : ORIGIN = 0x90000000, LENGTH = 64K
+ ilm (rxa!w) : ORIGIN = 0x80000000, LENGTH = 512K
+ ram (wxa!r) : ORIGIN = 0x90000000, LENGTH = 256K
}

7.8 cc1: error: unknown cpu ‘nuclei-300-series’ for ‘-mtune’

This mtune option is introduced in Nuclei SDK 0.3.5, used to select optimized gcc pipeline model for Nuclei RISC-V
Core series such as 200/300/600/900 series, and this feature required Nuclei GNU Toolchain 2022.01, please upgrade
to this version or later ones.

7.9 undefined reference to __errno when using libncrt library

When you are using libncrt library, and linked with -lm, you may face below issues

/home/share/devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/
→˓riscv64-unknown-elf/13.1.1/../../../../riscv64-unknown-elf/bin/ld: /home/share/
→˓devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/riscv64-
→˓unknown-elf/13.1.1/../../../../riscv64-unknown-elf/lib/rv32imafdc/ilp32d/libm.a(libm_a-
→˓w_exp.o): in function `.L1':
w_exp.c:(.text.exp+0x4a): undefined reference to `__errno'
/home/share/devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/
→˓riscv64-unknown-elf/13.1.1/../../../../riscv64-unknown-elf/bin/ld: /home/share/
→˓devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/riscv64-
→˓unknown-elf/13.1.1/../../../../riscv64-unknown-elf/lib/rv32imafdc/ilp32d/libm.a(libm_a-
→˓w_exp.o): in function `.L0 ':
w_exp.c:(.text.exp+0x6e): undefined reference to `__errno'
/home/share/devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/
→˓riscv64-unknown-elf/13.1.1/../../../../riscv64-unknown-elf/bin/ld: /home/share/
→˓devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/riscv64-
→˓unknown-elf/13.1.1/../../../../riscv64-unknown-elf/lib/rv32imafdc/ilp32d/libm.a(libm_a-
→˓w_log.o): in function `log':
w_log.c:(.text.log+0x28): undefined reference to `__errno'
/home/share/devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/
→˓riscv64-unknown-elf/13.1.1/../../../../riscv64-unknown-elf/bin/ld: w_log.c:(.text.
→˓log+0x46): undefined reference to `__errno'

(continues on next page)

174 Chapter 7. FAQ

Nuclei SDK, Release 0.8.0

(continued from previous page)

/home/share/devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/
→˓riscv64-unknown-elf/13.1.1/../../../../riscv64-unknown-elf/bin/ld: /home/share/
→˓devtools/toolchain/nuclei_gnu/linux64/newlibc/2023.10.14/gcc/bin/../lib/gcc/riscv64-
→˓unknown-elf/13.1.1/../../../../riscv64-unknown-elf/lib/rv32imafdc/ilp32d/libm.a(libm_a-
→˓math_err.o): in function `with_errno':
math_err.c:(.text.with_errno+0x12): undefined reference to `__errno'
collect2: error: ld returned 1 exit status

You can fix it by not link -lm library, since libncrt library already provided math library feature, so no need to link this
math library.

7.10 undefined reference to fclose/sprintf similar API provided in sys-
tem libraries

From 0.5.0 release, we no longer use --specs= option to select library we want to use, and we also passed
-nodefaultlibs options to not use standard system libraries, this changes are made to support both gcc and clang
toolchain, so in Nuclei SDK build system, we control the needed system libraries to be linked as required by STDCLIB
make variable, for details, please check Build/toolchain/*.mk makefiles, and also we use linker’s group libraries
feature --start-group archives --end-group to repeatly search undefined reference in the group libraries, but
this feature is not enabled in Eclipse CDT based IDE like Nuclei Studio, which undefined reference is searched in the
order of library specified on the command line, so you may meet issue like undefined fclose reference even you linked
newlib nano c library -lc_nano if the library order is not good, so to fix this issue, you may need to place the library in
a good order and need to repeatly link it, such as -lgcc -lc_nano -lm -lsemihost -lgcov -lgcc -lc_nano,
and also we have opened an issue to track it, see https://github.com/eclipse-embed-cdt/eclipse-plugins/issues/592

7.11 fatal error: rvintrin.h: No such file or directory

If you are using Nuclei Toolchain 2023.10, rvintrin.h no longer exist for B extension, please don’t include this header
file. If you want to use an intrinsic API for B extension, you need to write using c asm intrinsic.

7.12 riscv-nuclei-elf-gcc: not found when using Nuclei Studio 2023.10

riscv-nuclei-elf-gcc (gcc10) has changed to riscv64-unknown-elf-gcc (gcc13) since Nuclei Studio 2023.10
or Nuclei RISC-V Toolchain 2023.10, so if you are using older toolchain created npk package or ide project, you may
face this build fail issue, you can follow the user guide of Nuclei Studio 2023.10 to fix this issue, see chapter 8.

7.10. undefined reference to fclose/sprintf similar API provided in system libraries 175

https://github.com/eclipse-embed-cdt/eclipse-plugins/issues/592

Nuclei SDK, Release 0.8.0

176 Chapter 7. FAQ

CHAPTER

EIGHT

LICENSE

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
(continues on next page)

177

Nuclei SDK, Release 0.8.0

(continued from previous page)

form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(continues on next page)

178 Chapter 8. License

Nuclei SDK, Release 0.8.0

(continued from previous page)

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each

(continues on next page)

179

Nuclei SDK, Release 0.8.0

(continued from previous page)

Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

180 Chapter 8. License

Nuclei SDK, Release 0.8.0

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

181

Nuclei SDK, Release 0.8.0

182 Chapter 8. License

CHAPTER

NINE

GLOSSARY

API
(Application Program Interface) A defined set of routines and protocols for building application software.

DSP
(Digital Signal Processing) is the use of digital processing, such as by computers or more specialized digital
signal processors, to perform a wide variety of signal processing operations.

ISR
(Interrupt Service Routine) Also known as an interrupt handler, an ISR is a callback function whose execu-
tion is triggered by a hardware interrupt (or software interrupt instructions) and is used to handle high-priority
conditions that require interrupting the current code executing on the processor.

NN
(Neural Network) is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed
of artificial neurons or nodes.

XIP
(eXecute In Place) a method of executing programs directly from long term storage rather than copying it into
RAM, saving writable memory for dynamic data and not the static program code.

183

Nuclei SDK, Release 0.8.0

184 Chapter 9. Glossary

CHAPTER

TEN

APPENDIX

• Nuclei Tools and Documents: https://nucleisys.com/download.php

• Nuclei Software Opensource Organization: https://github.com/Nuclei-Software

• RISC-V MCU Opensource Organization: https://github.com/riscv-mcu

• Nuclei Toolchain Repo: https://github.com/riscv-mcu/riscv-gnu-toolchain

• Nuclei OpenOCD Repo: https://github.com/riscv-mcu/riscv-openocd

• Nuclei QEMU Repo: https://github.com/riscv-mcu/qemu

• Nuclei SDK: https://github.com/Nuclei-Software/nuclei-sdk

• NMSIS: https://github.com/Nuclei-Software/NMSIS

• Nuclei AI Library: https://github.com/Nuclei-Software/nuclei-ai-library

• Nuclei RISC-V IP Products: https://www.nucleisys.com/product.php

• Nuclei Tools Documentation: https://doc.nucleisys.com/nuclei_tools

• Nuclei Studio Supply Documents: https://github.com/Nuclei-Software/nuclei-studio

• RISC-V MCU Community Website: https://www.riscv-mcu.com/

• Nuclei RISC-V CPU Spec: https://doc.nucleisys.com/nuclei_spec

• RISC-V ISA Specfications(Ratified): https://riscv.org/technical/specifications

• RISC-V ISA Specification(Latest): https://github.com/riscv/riscv-isa-manual/releases

• RISC-V Architecture Profiles: https://github.com/riscv/riscv-profiles

• RISC-V Bitmanip(B) Extension Spec: https://github.com/riscv/riscv-bitmanip

• RISC-V Packed SIMD(P) Extension Spec: https://github.com/riscv/riscv-p-spec

• RISC-V Cryptography(K) Extension Spec: https://github.com/riscv/riscv-crypto

• RISC-V Vector(V) Extension Spec: https://github.com/riscv/riscv-v-spec

• RISC-V Vector Intrinsic API Spec: https://github.com/riscv-non-isa/rvv-intrinsic-doc

• RISC-V ISA Extension Spec Status: https://wiki.riscv.org/display/HOME/Specification+Status

• Nuclei Bumblebee Core Document: https://github.com/nucleisys/Bumblebee_Core_Doc

185

https://nucleisys.com/download.php
https://github.com/Nuclei-Software
https://github.com/riscv-mcu
https://github.com/riscv-mcu/riscv-gnu-toolchain
https://github.com/riscv-mcu/riscv-openocd
https://github.com/riscv-mcu/qemu
https://github.com/Nuclei-Software/nuclei-sdk
https://github.com/Nuclei-Software/NMSIS
https://github.com/Nuclei-Software/nuclei-ai-library
https://www.nucleisys.com/product.php
https://doc.nucleisys.com/nuclei_tools
https://github.com/Nuclei-Software/nuclei-studio
https://www.riscv-mcu.com/
https://doc.nucleisys.com/nuclei_spec
https://riscv.org/technical/specifications
https://github.com/riscv/riscv-isa-manual/releases
https://github.com/riscv/riscv-profiles
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-p-spec
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-v-spec
https://github.com/riscv-non-isa/rvv-intrinsic-doc
https://wiki.riscv.org/display/HOME/Specification+Status
https://github.com/nucleisys/Bumblebee_Core_Doc

Nuclei SDK, Release 0.8.0

186 Chapter 10. Appendix

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• search

187

Nuclei SDK, Release 0.8.0

188 Chapter 11. Indices and tables

INDEX

A
API, 183

D
DSP, 183

I
ISR, 183

N
NN, 183

X
XIP, 183

189

	Overview
	Introduction
	Design and Architecture
	Get Started
	Contributing
	Copyright
	License

	Quick Startup
	Use Nuclei SDK in Nuclei Studio
	Setup Tools and Environment
	Use Prebuilt Tools in Nuclei Studio

	Get and Setup Nuclei SDK
	Build, Run and Debug Sample Application
	Hardware Preparation
	Build Application
	Run Application
	Debug Application

	Create helloworld Application
	Advanced Usage

	Developer Guide
	Code Style
	Build System based on Makefile
	Makefile Structure
	Makefile.base
	gmsl
	toolchain
	Makefile.misc
	Makefile.conf
	Makefile.rules
	Makefile.files
	Makefile.soc
	Makefile.rtos
	Makefile.components
	Makefile.core
	Makefile.global
	Makefile.local

	Makefile targets of make command
	Makefile variables passed by make command
	SOC
	BOARD
	VARIANT
	TOOLCHAIN
	DOWNLOAD
	CORE
	ARCH_EXT
	CPU_SERIES
	SEMIHOST
	SIMULATION
	GDB_PORT
	JTAGSN
	BANNER
	V
	SILENT

	Makefile variables used only in Application Makefile
	TARGET
	NUCLEI_SDK_ROOT
	RTOS
	AUTOVEC
	MIDDLEWARE
	NMSIS_LIB
	NMSIS_LIB_ARCH
	STDCLIB
	NCRTHEAP
	NCRTIO
	SMP
	BOOT_HARTID
	HARTID_OFS
	STACKSZ
	HEAPSZ
	RISCV_ARCH
	RISCV_ABI
	RISCV_CMODEL
	RISCV_TUNE
	APP_COMMON_FLAGS
	APP_ASMFLAGS
	APP_CFLAGS
	APP_CXXFLAGS
	APP_LDFLAGS
	NOGC
	RTTHREAD_MSH

	Build Related Makefile variables used only in Application Makefile
	INCDIRS
	C_INCDIRS
	CXX_INCDIRS
	ASM_INCDIRS
	SRCDIRS
	C_SRCDIRS
	CXX_SRCDIRS
	ASM_SRCDIRS
	C_SRCS
	CXX_SRCS
	ASM_SRCS
	EXCLUDE_SRCS
	COMMON_FLAGS
	CFLAGS
	CXXFLAGS
	ASMFLAGS
	LDFLAGS
	LDLIBS
	LIBDIRS
	LINKER_SCRIPT

	Application Development
	Overview
	Add Extra Source Code
	Add Extra Include Directory
	Add Extra Build Options
	Optimize For Code Size
	Change Link Script
	Set Default Make Options
	Set Default Global Make Options For Nuclei SDK
	Set Local Make Options For Your Application

	Build Nuclei SDK Documentation
	Install Tools
	Build The Documentation

	Contributing
	Port your Nuclei SoC into Nuclei SDK
	Submit your issue
	Submit your pull request
	Git commit guide

	Design and Architecture
	Overview
	Directory Structure
	Project Components

	Nuclei Processor
	Introduction
	NMSIS in Nuclei SDK
	SoC Resource

	SoC
	Nuclei Demo SoC
	Nuclei Eval SoC
	Overview
	Supported Boards
	Usage

	GD32VF103 SoC
	Overview
	Supported Boards
	Usage

	GD32VW55x SoC
	Overview
	Supported Boards
	Usage

	Board
	Nuclei FPGA Evaluation Kit
	Overview
	Setup
	How to use

	GD32VF103V RV-STAR Kit
	Overview
	Setup
	How to use

	GD32VF103V Evaluation Kit
	Overview
	Setup
	How to use

	Sipeed Longan Nano
	Overview
	Versions
	Pinout
	Schematic
	Resources
	Setup
	How to use
	Extensions

	GD32VF103C DLink Debugger
	Overview
	Setup
	How to use

	TTGO T-Display-GD32
	Overview
	Setup
	How to use

	GD32VW553H Evaluation Kit
	Overview
	Setup
	How to use

	Peripheral
	Overview
	Usage

	RTOS
	Overview
	FreeRTOS
	UCOSII
	RT-Thread
	ThreadX

	Application
	Overview
	Bare-metal applications
	helloworld
	cpuinfo
	demo_timer
	demo_clint_timer
	demo_eclic
	demo_plic
	demo_dsp
	lowpower
	smphello
	demo_nice
	demo_vnice
	coremark
	dhrystone
	dhrystone_v2.2
	whetstone
	whetstone_v1.2
	demo_smode_eclic
	demo_smode_plic
	demo_sstc
	demo_spmp
	demo_smpu
	demo_profiling
	demo_pmp
	demo_cidu
	demo_cache
	demo_stack_check
	demo_pma

	FreeRTOS applications
	demo
	smpdemo

	UCOSII applications
	demo

	RT-Thread applications
	demo
	msh
	demo_smode

	ThreadX applications
	demo

	Changelog
	V0.8.0
	V0.7.1
	V0.7.0
	V0.6.0
	V0.5.0
	V0.4.1
	V0.4.0
	V0.3.9
	V0.3.8
	V0.3.7
	V0.3.6
	V0.3.5
	V0.3.4
	V0.3.3
	V0.3.2
	V0.3.1
	V0.3.0
	V0.2.9
	V0.2.8
	V0.2.7
	V0.2.6
	V0.2.5
	V0.2.5-RC1
	V0.2.4
	V0.2.3
	V0.2.2
	V0.2.1
	V0.2.0-alpha
	V0.1.1

	FAQ
	Why I can’t download application?
	How to select correct FTDI debugger?
	Why I can’t download application in Linux?
	Why the provided application is not running correctly in my Nuclei FPGA Evaluation Board?
	Why ECLIC handler can’t be installed using ECLIC_SetVector?
	Access to github.com is slow, any workaround?
	`.text’ will not fit in region `ilm’ or `.bss’ will not fit in region `ram’
	cc1: error: unknown cpu ‘nuclei-300-series’ for ‘-mtune’
	undefined reference to __errno when using libncrt library
	undefined reference to fclose/sprintf similar API provided in system libraries
	fatal error: rvintrin.h: No such file or directory
	riscv-nuclei-elf-gcc: not found when using Nuclei Studio 2023.10

	License
	Glossary
	Appendix
	Indices and tables
	Index

