
HummingBird SDK
Release 0.1.4

Nuclei

Jan 17, 2023

CONTENTS:

1 Overview 1
1.1 Introduction . 1
1.2 Design and Architecture . 1
1.3 Get Started . 3
1.4 Contributing . 3
1.5 Copyright . 3
1.6 License . 4

2 Quick Startup 5
2.1 Setup Tools and Environment . 5

2.1.1 Install and Setup Tools in Windows . 5
2.1.2 Install and Setup Tools in Linux . 6

2.2 Get and Setup HummingBird SDK . 7
2.3 Build, Run and Debug Sample Application . 8

2.3.1 Hardware Preparation . 11
2.3.2 Build Application . 11
2.3.3 Run Application . 12
2.3.4 Debug Application . 12

2.4 Create helloworld Application . 15
2.5 Advanced Usage . 17

3 Developer Guide 19
3.1 Code Style . 19
3.2 Build System based on Makefile . 19

3.2.1 Makefile Structure . 19
3.2.2 Makefile targets of make command . 24
3.2.3 Makefile variables passed by make command . 25
3.2.4 Makefile variables used only in Application Makefile . 28
3.2.5 Build Related Makefile variables used only in Application Makefile 30

3.3 Application Development . 34
3.3.1 Overview . 34
3.3.2 Add Extra Source Code . 35
3.3.3 Add Extra Include Directory . 35
3.3.4 Add Extra Build Options . 35
3.3.5 Optimize For Code Size . 36
3.3.6 Change Link Script . 36
3.3.7 Set Default Make Options . 36

3.4 Build HummingBird SDK Documentation . 36
3.4.1 Install Tools . 36
3.4.2 Build The Documentation . 37

i

4 Contributing 39
4.1 Port your HummingBird SoC into HummingBird SDK . 39
4.2 Submit your issue . 43
4.3 Submit your pull request . 43
4.4 Git commit guide . 43

5 Design and Architecture 45
5.1 Overview . 45

5.1.1 Directory Structure . 45
5.1.2 Project Components . 48

5.2 HummingBird RISC-V Processor . 48
5.2.1 Introduction . 49
5.2.2 NMSIS in HummingBird SDK . 49
5.2.3 SoC Resource . 118

5.3 SoC . 118
5.3.1 HummingBird SoC . 118
5.3.2 HummingBird SoC V2 . 121

5.4 Board . 122
5.4.1 HummingBird Evaluation Kit . 122
5.4.2 DDR200T Evaluation Kit . 124
5.4.3 MCU200T Evaluation Kit . 126

5.5 Peripheral . 127
5.5.1 Overview . 127
5.5.2 Usage . 128

5.6 RTOS . 128
5.6.1 Overview . 128
5.6.2 FreeRTOS . 128
5.6.3 UCOSII . 129
5.6.4 RT-Thread . 130

5.7 Application . 130
5.7.1 Overview . 130
5.7.2 Bare-metal applications . 131
5.7.3 FreeRTOS applications . 139
5.7.4 UCOSII applications . 140
5.7.5 RT-Thread applications . 142

6 Changelog 145
6.1 V0.1.4 . 145
6.2 V0.1.3 . 145
6.3 V0.1.2 . 146
6.4 V0.1.1 . 146
6.5 V0.1.0 . 147

7 FAQ 149
7.1 Why I can’t download application in Windows? . 149
7.2 Why I can’t download application in Linux? . 149
7.3 Why the provided application is not running correctly in my HummingBird Evaluation Board? 150

8 License 151

9 Glossary 157

10 Appendix 159

11 Indices and tables 161

ii

Index 163

iii

iv

CHAPTER

ONE

OVERVIEW

1.1 Introduction

The HummingBird RISC-V Software Development Kit (SDK) is an open-source software platform to speed up the
software development of SoCs based on HummingBird RISC-V Processor Cores.

This HummingBird SDK is built based on the modified version of NMSIS1, user can access all the APIs provided by
NMSIS2 and also the APIs that provided by HummingBird SDK which mainly for on-board peripherals access such as
GPIO, UART, SPI and I2C, etc.

HummingBird SDK provides a good start base for embedded developers which will help them simplify software de-
velopment and improve time-to-market through well-designed software framework.

Note:

• The NMSIS used in this HummingBird SDK is modified for HummingBird RISC-V Core, which is not compa-
tiable with Nuclei NMSIS, take care.

• HummingBird SDK is developed based on Nuclei SDK3 0.2.4 release, and will diverge in future.

• To get a pdf version of this documentation, please click HBird SDK Document4

1.2 Design and Architecture

The HummingBird SDK general design and architecture are shown in the block diagram as below.

As HummingBird SDK Design and Architecture Diagram (page 2) shown, The HummingBird SDK provides the fol-
lowing features:

• HummingBird RISC-V Core API (page 49) service is built on top of a modified version of NMSIS5, so silicon
vendors of HummingBird RISC-V processors can easily port their SoCs to HummingBird SDK, and quickly
evaluate software on their SoC.

• NMSIS-NN and NMSIS-DSP library can be also used in HummingBird SDK, and the prebuilt libraries are
included in NMSIS/Library folder of HummingBird SDK.

• Mainly support two HummingBird RISC-V Processor based SoCs, HummingBird SoC (page 118).
1 https://github.com/Nuclei-Software/NMSIS
2 https://github.com/Nuclei-Software/NMSIS
3 https://github.com/nuclei-software/nuclei-sdk
4 https://doc.nucleisys.com/hbird_sdk/hummingbirdsdk.pdf
5 https://github.com/Nuclei-Software/NMSIS

1

https://github.com/Nuclei-Software/NMSIS
https://github.com/Nuclei-Software/NMSIS
https://github.com/nuclei-software/nuclei-sdk
https://doc.nucleisys.com/hbird_sdk/hummingbirdsdk.pdf
https://github.com/Nuclei-Software/NMSIS

HummingBird SDK, Release 0.1.4

Fig. 1: HummingBird SDK Design and Architecture Diagram

• Provided realtime operation system service via FreeRTOS (page 128), UCOSII (page 129) and RT-Thread
(page 130)

• Provided bare-metal service for embedded system software beginners and resource-limited use-cases.

• Currently HummingBird SDK didn’t define any common device APIs to access GPIO/I2C/SPI/UART devices,
it still relied on the device/peripheral APIs from firmware libraries from various silicon vendors.

• Applications are logically seperated into three parts:

– General applications for all HummingBird RISC-V Processors: In the HummingBird SDK software
code, the applications provided are all general applications which can run on all HummingBird RISC-V
Processors, with basic UART service to provide printf function.

– HummingBird SoC applications: These applications are not included in the HummingBird SDK software
code, it is maintained seperately, it will use resource from HummingBird SoC and its evaluation boards to
develop applications, which will not be compatiable with different boards.

2 Chapter 1. Overview

HummingBird SDK, Release 0.1.4

1.3 Get Started

Please refer to Quick Startup (page 5) to get started to take a try with HummingBird SDK.

1.4 Contributing

Contributing to HummingBird SDK is welcomed, if you have any issue or pull request want to open, you can take a
look at Contributing (page 39) section.

1.5 Copyright

Copyright (c) 2019 - Present, Nuclei System Technology. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the Nuclei System Technology., nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

1.3. Get Started 3

HummingBird SDK, Release 0.1.4

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.6 License

HummingBird SDK is an opensource project licensed by Apache License 2.0 (page 151).

4 Chapter 1. Overview

CHAPTER

TWO

QUICK STARTUP

2.1 Setup Tools and Environment

To start to use HummingBird SDK, you need to install the following tools:

• For Windows users, please check Install and Setup Tools in Windows (page 5)

• For Linux users, please check Install and Setup Tools in Linux (page 6)

2.1.1 Install and Setup Tools in Windows

Make sure you are using at least Windows 7, and then you can follow the following steps to download and install tools
for you.

1. Create an Nuclei folder in your Windows Environment, such as D:\Software\Nuclei

2. Download the following tools from Nuclei Download Center6, please check and follow the figure Nuclei Tools
need to be downloaded for Windows (page 5).

• Nuclei RISC-V GNU Toolchain for Windows, see number 1 in the figure Nuclei Tools need to be down-
loaded for Windows (page 5)

• Nuclei OpenOCD for Windows, see number 2 in the figure Nuclei Tools need to be downloaded for Win-
dows (page 5)

• Windows Build Tools, see number 3 in the figure Nuclei Tools need to be downloaded for Windows (page 5)

Fig. 1: Nuclei Tools need to be downloaded for Windows

3. Setup tools in previously created Nuclei folder, create gcc, openocd and build-tools folders.
6 https://nucleisys.com/download.php

5

https://nucleisys.com/download.php

HummingBird SDK, Release 0.1.4

• Nuclei RISC-V GNU Toolchain for Windows Extract the download gnu toolchain into a temp folder,
and copy the files into gcc folder, make sure the gcc directory structure looks like this figure Nuclei
RISC-V GCC Toolchain directory structure of gcc (page 6)

Fig. 2: Nuclei RISC-V GCC Toolchain directory structure of gcc

• Nuclei OpenOCD for Windows Extract the download openocd tool into a temp folder, and copy the files
into openocd folder, make sure the openocd directory structure looks like this figure Nuclei OpenOCD
directory structure of openocd (page 6)

Fig. 3: Nuclei OpenOCD directory structure of openocd

• Windows Build Tools Extract the download build-tools tool into a temp folder, and copy the files into
build-tools folder, make sure the build-tools directory structure looks like this figure Nuclei
Windows Build Tools directory structure of build-tools (page 7)

2.1.2 Install and Setup Tools in Linux

Make sure you are using Centos or Ubuntu 64 bit, and then you can follow the following steps to download and install
tools for you.

1. Create an Nuclei folder in your Linux Environment, such as ~/Software/Nuclei

2. Download the following tools from Nuclei Download Center7, please check and follow the figure Nuclei Tools
need to be downloaded for Linux (page 7).

• Nuclei RISC-V GNU Toolchain for Linux, for CentOS or Ubuntu < 18.04 click number 1-1, for Ubuntu
>=18.04 click number 1-2 in the figure Nuclei Tools need to be downloaded for Linux (page 7)

7 https://nucleisys.com/download.php

6 Chapter 2. Quick Startup

https://nucleisys.com/download.php

HummingBird SDK, Release 0.1.4

Fig. 4: Nuclei Windows Build Tools directory structure of build-tools

• Nuclei OpenOCD for Linux, see number 2-1 for 64bit version in the figure Nuclei Tools need to be down-
loaded for Linux (page 7)

• Make >= 3.82: Install Make using sudo apt-get install make in Ubuntu, or sudo yum install
make in CentOS.

Fig. 5: Nuclei Tools need to be downloaded for Linux

3. Setup tools in previously created Nuclei folder, create gcc and openocd folders. Please follow similar steps
described in Step 3 in Install and Setup Tools in Windows (page 5) to extract and copy necessary files.

Note:

• Only gcc and openocd are required for Linux.

• Extract the downloaded Linux tools, not the windows version.

2.2 Get and Setup HummingBird SDK

The source code of HummingBird SDK is maintained in Github8 and Gitee9.

• We mainly maintained github version, and gitee version is mirrored, just for fast access in China.

• Check source code in HummingBird SDK in Github10.
8 https://github.com
9 https://gitee.com

10 https://github.com/riscv-mcu/hbird-sdk

2.2. Get and Setup HummingBird SDK 7

https://github.com
https://gitee.com
https://github.com/riscv-mcu/hbird-sdk

HummingBird SDK, Release 0.1.4

• Stable version of HummingBird SDK is maintained in master version, if you want release version of Humming-
Bird SDK, please check in HummingBird SDK Release in Github11.

Here are the steps to clone the latest source code from Github:

• Make sure you have installed Git tool, see https://git-scm.com/download/

• Then open your terminal, and make sure git command can be accessed

• Run git clone https://github.com/riscv-mcu/hbird-sdk hbird-sdk to clone source code into
hbird-sdk folder

Note:

– If you have no internet access, you can also use pre-downloaded hbird-sdk code, and use it.

– If the backup repo is not up to date, you can import github repo in gitee by yourself, see https://gitee.com/
projects/import/url

• Create tool environment config file for HummingBird SDK

– Windows Create setup_config.bat in hbird-sdk folder, and open this file your editor, and paste the
following content, assuming you followed Install and Setup Tools in Windows (page 5) and install tools
into D:\Software\Nuclei, otherwise please use your correct tool root path.

set NUCLEI_TOOL_ROOT=D:\Software\Nuclei

– Linux Create setup_config.sh in hbird-sdk folder, and open this file your editor, and paste the fol-
lowing content, assuming you followed Install and Setup Tools in Linux (page 6) and install tools into
~/Software/Nuclei, otherwise please use your correct tool root path.

NUCLEI_TOOL_ROOT=~/Software/Nuclei

2.3 Build, Run and Debug Sample Application

Assume you have followed steps in Get and Setup HummingBird SDK (page 7) to clone source code and create
setup_config.bat and setup_config.sh.

To build, run and debug application, you need to open command terminal in hbird-sdk folder.

• For Windows users, you can open windows command terminal and cd to hbird-sdk folder, then run the follow-
ing commands to setup build environment for HummingBird SDK, the output will be similar as this screenshot
Setup Build Environment for HummingBird SDK in Windows Command Line (page 9):

1 setup.bat
2 echo %PATH%
3 where riscv-nuclei-elf-gcc openocd make rm
4 make help

• For Linux users, you can open Linux bash terminal and cd to hbird-sdk folder, then run the following com-
mands to setup build environment for HummingBird SDK, the output will be similar as this screenshot Setup
Build Environment for HummingBird SDK in Linux Bash (page 10):

11 https://github.com/riscv-mcu/hbird-sdk/releases

8 Chapter 2. Quick Startup

https://github.com/riscv-mcu/hbird-sdk/releases
https://git-scm.com/download/
https://gitee.com/projects/import/url
https://gitee.com/projects/import/url

HummingBird SDK, Release 0.1.4

Fig. 6: Setup Build Environment for HummingBird SDK in Windows Command Line

2.3. Build, Run and Debug Sample Application 9

HummingBird SDK, Release 0.1.4

1 source setup.sh
2 echo $PATH
3 which riscv-nuclei-elf-gcc openocd make rm
4 make help

Fig. 7: Setup Build Environment for HummingBird SDK in Linux Bash

Note:

• Only first line setup.bat or source setup.sh are required before build, run or debug application. The
setup.bat and setup.sh are just used to append Nuclei RISC-V GCC Toolchain, OpenOCD and Build-Tools
binary paths into environment variable PATH

• line 2-4 are just used to check whether build environment is setup correctly, especially the PATH of Nuclei Tools
are setup correctly, so we can use the riscv-nuclei-elf-xxx, openocd, make and rm tools

• If you know how to append Nuclei RISC-V GCC Toolchain, OpenOCD and Build-Tools binary paths to PATH
variable in your OS environment, you can also put the downloaded Nuclei Tools as you like, and no need to run
setup.bat or source setup.sh

Here for a quick startup, this guide will take board HummingBird Evaluation Kit (page 122) for example to demostrate
how to setup hardware, build run and debug application in Windows.

The demo application, we will take application/baremetal/helloworld for example.

First of all, please reuse previously setuped build environment command terminal.

Run cd application/baremetal/helloworld to cd the helloworld example folder.

10 Chapter 2. Quick Startup

HummingBird SDK, Release 0.1.4

2.3.1 Hardware Preparation

Please check Board (page 122) and find your board’s page, and follow Setup section to setup your hardware, mainly
JTAG debugger driver setup and on-board connection setup.

• Power on the HummingBird board, and use Micro-USB data cable to connect the board and your PC, make sure
you have setup the JTAG driver correctly, and you can see JTAG port and serial port.

• Open a UART terminal tool such as TeraTerm in Windows12 or Minicom in Linux13, and minitor the serial port
of the Board, the UART baudrate is 115200 bps

2.3.2 Build Application

We need to build application for this board HummingBird Evaluation Kit (page 122) using this command line:

make SOC=hbird BOARD=hbird_eval CORE=e203 all

Here is the sample output of this command:

Current Configuration: RISCV_ARCH=rv32imac RISCV_ABI=ilp32 SOC=hbird BOARD=hbird_eval␣
→˓CORE=e203 DOWNLOAD=ilm
Assembling : ../../../SoC/hbird/Common/Source/GCC/intexc_hbird.S
Assembling : ../../../SoC/hbird/Common/Source/GCC/startup_hbird.S
Compiling : ../../../SoC/hbird/Common/Source/Drivers/hbird_gpio.c
Compiling : ../../../SoC/hbird/Common/Source/Drivers/hbird_uart.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/close.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/fstat.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/gettimeofday.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/isatty.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/lseek.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/read.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/sbrk.c
Compiling : ../../../SoC/hbird/Common/Source/Stubs/write.c
Compiling : ../../../SoC/hbird/Common/Source/hbird_common.c
Compiling : ../../../SoC/hbird/Common/Source/system_hbird.c
Compiling : hello_world.c
Linking : hello_world.elf
text data bss dec hex filename
7944 112 2440 10496 2900 hello_world.elf

As you can see, that when the application is built successfully, the elf will be generated and will also print the size
information of the hello_world.elf.

Note:

• In order to make sure that there is no application build before, you can run make SOC=hbird
BOARD=hbird_eval CORE=e203 clean to clean previously built objects and build dependency files.

• About the make variable or option(SOC, BOARD) passed to make command, please refer to Build System based
on Makefile (page 19).

12 http://ttssh2.osdn.jp/
13 https://help.ubuntu.com/community/Minicom

2.3. Build, Run and Debug Sample Application 11

http://ttssh2.osdn.jp/
https://help.ubuntu.com/community/Minicom

HummingBird SDK, Release 0.1.4

2.3.3 Run Application

If the application is built successfully for this board HummingBird Evaluation Kit (page 122), then you can run it using
this command line:

make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Here is the sample output of this command:

"Download and run hello_world.elf"
riscv-nuclei-elf-gdb hello_world.elf -ex "set remotetimeout 240" \

-ex "target remote | openocd --pipe -f ../../../SoC/hbird/Board/hbi
--batch -ex "monitor reset halt" -ex "monitor halt" -ex "monitor fl

resume" -ex "monitor shutdown" -ex "quit"
D:\Nuclei\gcc\bin\riscv-nuclei-elf-gdb.exe: warning: Couldn't determine a p
Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
system_default_interrupt_handler (mcause=3735928559, sp=<optimized out>) at88
188 printf("MTVAL : 0x%lx\r\n", __RV_CSR_READ(CSR_MBADADDR));
JTAG tap: riscv.cpu tap/device found: 0x1e200a6d (mfg: 0x536 (Nuclei System
halted at 0x8000050c due to debug interrupt
cleared protection for sectors 0 through 63 on flash bank 0

Loading section .init, size 0xc4 lma 0x80000000
Loading section .text, size 0x1c6e lma 0x80000100
Loading section .rodata, size 0x1ec lma 0x80001d70
Loading section .data, size 0x70 lma 0x80001f5c
Start address 0x80000000, load size 8078
Transfer rate: 45 KB/sec, 2019 bytes/write.
halted at 0x80000004 due to step
shutdown command invoked
A debugging session is active.

Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) [answered Y; input not from terminal]
[Inferior 1 (Remote target) detached]

As you can see the application is uploaded successfully using openocd and gdb, then you can check the output in your
UART terminal, see HummingBird SDK Hello World Application UART Output (page 13).

2.3.4 Debug Application

If the application is built successfully for this board HummingBird Evaluation Kit (page 122), then you can debug it
using this command line:

make SOC=hbird BOARD=hbird_eval CORE=e203 debug

1. The program is not loaded automatically when you enter to debug state, just in case you want to debug the
program running on the board.

12 Chapter 2. Quick Startup

HummingBird SDK, Release 0.1.4

Fig. 8: HummingBird SDK Hello World Application UART Output

2.3. Build, Run and Debug Sample Application 13

HummingBird SDK, Release 0.1.4

"Download and debug hello_world.elf"
riscv-nuclei-elf-gdb hello_world.elf -ex "set remotetimeout 240" \

-ex "target remote | openocd --pipe -f ../../../SoC/hbird/Board/hbi
D:\Nuclei\gcc\bin\riscv-nuclei-elf-gdb.exe: warning: Couldn't determine a p
GNU gdb (GDB) 8.3.0.20190516-git
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=i686-w64-mingw32 --target=riscv-nuclei-e
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
--Type <RET> for more, q to quit, c to continue without paging--
Reading symbols from hello_world.elf...
Remote debugging using | openocd --pipe -f ../../../SoC/hbird/Board/hbird_e
Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
system_default_interrupt_handler (mcause=3735928559, sp=<optimized out>)

at ../../../SoC/hbird/Common/Source/system_hbird.c:188
188 printf("MTVAL : 0x%lx\r\n", __RV_CSR_READ(CSR_MBADADDR));

2. If you want to load the built application, you can type load to load the application.

(gdb) load
Loading section .init, size 0x266 lma 0x8000000
Loading section .text, size 0x2e9c lma 0x8000280
Loading section .rodata, size 0x1f0 lma 0x8003120
Loading section .data, size 0x70 lma 0x8003310
Start address 0x800015c, load size 13154
Transfer rate: 7 KB/sec, 3288 bytes/write.

3. If you want to set a breakpoint at main, then you can type b main to set a breakpoint.

(gdb) b main
Breakpoint 1 at 0x8001b04: file hello_world.c, line 85.

4. If you want to set more breakpoints, you can do as you like.

5. Then you can type c, then the program will stop at main

(gdb) c
Continuing.
Note: automatically using hardware breakpoints for read-only addresses.

Breakpoint 1, main () at hello_world.c:85
(continues on next page)

14 Chapter 2. Quick Startup

HummingBird SDK, Release 0.1.4

(continued from previous page)

85 srand(__get_rv_cycle() | __get_rv_instret() | __RV_CSR_READ(CSR_
→˓MCYCLE));

6. Then you can step it using n (short of next) or s (short of step)

(gdb) n
86 uint32_t rval = rand();
(gdb) n
87 rv_csr_t misa = __RV_CSR_READ(CSR_MISA);
(gdb) s
89 printf("MISA: 0x%lx\r\n", misa);
(gdb) n
90 print_misa();
(gdb) n
92 printf("Hello World!\r\n");
(gdb) n
93 printf("Hello World!\r\n");

7. If you want to quit debugging, then you can press CTRL - c, and type q to quit debugging.

(gdb) Quit
(gdb) q
A debugging session is active.

Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) y
Detaching from program: D:\workspace\Sourcecode\hbird-sdk\application\baremetal\
→˓helloworld\hello_world.elf, Remote target
Ending remote debugging.
[Inferior 1 (Remote target) detached]

Note:

• More about how to debug using gdb, you can refer to the GDB User Manual14.

• If you want to debug using Nuclei Studio, you can open Nuclei Studio, and create a debug configuration, and
choose the application elf, and download and debug in IDE.

2.4 Create helloworld Application

If you want to create your own helloworld application, it is also very easy.

There are several ways to achieve it, see as below:

• Method 1: You can find a most similar sample application folder and copy it, such as application/
baremetal/helloworld, you can copy and rename it as application/baremetal/hello

– Open the Makefile in application/baremetal/hello

1. Change TARGET = hello_world to TARGET = hello

14 https://www.gnu.org/software/gdb/documentation/

2.4. Create helloworld Application 15

https://www.gnu.org/software/gdb/documentation/

HummingBird SDK, Release 0.1.4

– Open the hello_world.c in application/baremetal/hello, and replace the content using code be-
low:

1 // See LICENSE for license details.
2 #include <stdio.h>
3 #include <time.h>
4 #include <stdlib.h>
5 #include "hbird_sdk_soc.h"
6

7 int main(void)
8 {
9 printf("Hello World from HummingBird RISC-V Processor!\r\n");

10 return 0;
11 }

– Save all the changes, and then you can follow the steps described in Build, Run and Debug Sample Appli-
cation (page 8) to run or debug this new application.

• Method 2: You can also do it from scratch, with just create simple Makefile and main.c

– Create new folder named hello in application/baremetal

– Create two files named Makefile and main.c

– Open Makefile and edit the content as below:

1 TARGET = hello
2

3 HBIRD_SDK_ROOT = ../../..
4

5 SRCDIRS = .
6

7 INCDIRS = .
8

9 include $(HBIRD_SDK_ROOT)/Build/Makefile.base

– Open main.c and edit the content as below:

1 // See LICENSE for license details.
2 #include <stdio.h>
3 #include <time.h>
4 #include <stdlib.h>
5 #include "hbird_sdk_soc.h"
6

7 int main(void)
8 {
9 printf("Hello World from HummingBird RISC-V Processor!\r\n");

10 return 0;
11 }

– Save all the changes, and then you can follow the steps described in Build, Run and Debug Sample Appli-
cation (page 8) to run or debug this new application.

Note:

• Please refer to Application Development (page 34) and Build System based on Makefile (page 19) for more
information.

16 Chapter 2. Quick Startup

HummingBird SDK, Release 0.1.4

• If you want to access SoC related APIs, please use hbird_sdk_soc.h header file.

• If you want to access SoC and board related APIs, please use hbird_sdk_hal.h header file.

• For simplified application development, you can use hbird_sdk_hal.h directly.

2.5 Advanced Usage

For more advanced usage, please follow the items as below:

• Click Design and Architecture (page 45) to learn about HummingBird SDK Design and Architecture, Board and
SoC support documentation.

• Click Developer Guide (page 19) to learn about HummingBird SDK Build System and Application Development.

• Click Application (page 130) to learn about each application usage and expected output.

Note:

• If you met some issues in using this guide, please check FAQ (page 149), if still not solved, please Submit your
issue (page 43).

• If you want to develop HummingBird SDK application in Nuclei Studio, you can also easily integrate the source
code with it.

1. Add required source code folders, and header file folders in IDE

2. Check the compiler and linker options using extra V=1 passed with make, and adapt the options in IDE

3. Add extra macros definition and include folders in project configurations

4. Build and debug project in IDE

2.5. Advanced Usage 17

HummingBird SDK, Release 0.1.4

18 Chapter 2. Quick Startup

CHAPTER

THREE

DEVELOPER GUIDE

3.1 Code Style

In HummingBird SDK, we use EditorConfig15 to maintain our development coding styles.

Our editorconfig file16 is maintained in the root directory of HummingBird SDK.

You can install editorconfig plugins for your editor, see https://editorconfig.org/#download.

We use doxygen17 to comment C/C++ source code.

3.2 Build System based on Makefile

HummingBird SDK’s build system is based on Makefile, user can build, run ordebug application in Windows and
Linux.

3.2.1 Makefile Structure

HummingBird SDK’s Makefiles mainly placed in <HBIRD_SDK_ROOT>/Build directory and an extra Makefile
located in <HBIRD_SDK_ROOT>/Makefile.

This extra <HBIRD_SDK_ROOT>/Makefile introduce a new Make variable called PROGRAM to provide the ability
to build or run application in <HBIRD_SDK_ROOT>.

For example, if you want to rebuild and upload application application/baremetal/timer_test, you can run make
PROGRAM=application/baremetal/timer_test clean upload to achieve it.

The <HBIRD_SDK_ROOT>/Build directory content list as below:

gmsl/
Makefile.base
Makefile.conf
Makefile.core
Makefile.components
Makefile.files
Makefile.global -> Created by user
Makefile.misc
Makefile.rtos

(continues on next page)

15 https://editorconfig.org/
16 https://github.com/riscv-mcu/hbird-sdk/tree/master/.editorconfig
17 http://www.doxygen.nl/manual/docblocks.html

19

https://editorconfig.org/
https://github.com/riscv-mcu/hbird-sdk/tree/master/.editorconfig
https://editorconfig.org/#download
http://www.doxygen.nl/manual/docblocks.html

HummingBird SDK, Release 0.1.4

(continued from previous page)

Makefile.rules
Makefile.soc

The file or directory is used explained as below:

Makefile.base

This Makefile.base file is used as HummingBird SDK build system entry file, application’s Makefile need to include
this file to use all the features of HummingBird SDK build system.

It will expose Make variables or options such as BOARD or SOC passed by make command, click Makefile variables
passed by make command (page 25) to learn more.

This file will include optional Makefile.global (page 23) and Makefile.local (page 24) which allow user to set custom
global Makefile configurations and local application Makefile configurations.

This file will include the following makefiles:

• gmsl (page 20): additional library functions provided via gmsl

• Makefile.misc (page 20): misc functions and OS check helpers

• Makefile.conf (page 21): main Makefile configuration entry

• Makefile.rules (page 21): make rules of this build system

gmsl

The gmsl directory consist of the GNU Make Standard Library (GMSL)18, which is an a library of functions to be used
with GNU Make’s $(call) that provides functionality not available in standard GNU Make.

We use this gmsl tool to make sure we help us achieve some linux command which is only supported in Linux.

Makefile.misc

This Makefile.misc file mainly provide these functions:

• Define get_csrcs, get_asmsrcs, get_cxxsrcs and check_item_exist make functions

– get_csrcs: Function to get *.c or *.C source files from a list of directories, no ability to do recursive
match. e.g. $(call get_csrcs, csrc csrc/abc) will return c source files in csrc and csrc/abc
directories.

– get_asmsrcs: Function to get *.s or *.S source files from a list of directories, no ability to do recursive
match. e.g. $(call get_asmsrcs, asmsrc asmsrc/abc) will return asm source files in asmsrc and
asmsrc/abc directories.

– get_cxxsrcs: Function to get *.cpp or *.CPP source files from a list of directories, no ability to do recur-
sive match. e.g. $(call get_cxxsrcs, cppsrc cppsrc/abc) will return cpp source files in cppsrc
and cppsrc/abc directories.

– check_item_exist: Function to check if item existed in a set of items. e.g. $(call check_item_exist,
flash, flash ilm flashxip) will check flash whether existed in flash ilm flashxip, if existed,
return flash, otherwise return empty.

• Check and define OS related functions, and also a set of trace print functions.
18 http://sourceforge.net/projects/gmsl/

20 Chapter 3. Developer Guide

http://sourceforge.net/projects/gmsl/

HummingBird SDK, Release 0.1.4

Makefile.conf

This Makefile.conf file will define the following items:

• Toolchain related variables used during compiling

• Debug related variables

• Include Makefile.files (page 21) and Makefile.rtos (page 23)

• Collect all the C/C++/ASM compiling and link options

Makefile.components

This Makefile.components will include build.mk Makefiles of selected components defined via makefile variable
MIDDLEWARE (page 29), the Makefiles are placed in the sub-folders of <HBIRD_SDK_ROOT>/Components/.

A valid middleware component should be organized like this, take fatfs as example :

Components/fatfs/
build.mk
documents
LICENSE.txt
source

For example, if there are two valid middleware components in <HBIRD_SDK_ROOT>/Components/, called fatfs
and tjpgd, and you want to use them in your application, then you can set MIDDLEWARE like this MIDDLEWARE :=
fatfs tjpgd, then the application will include these two middlewares into build process.

Makefile.rules

This Makefile.rules file will do the following things:

• Collect all the sources during compiling

• Define all the rules used for building, uploading and debugging

• Print help message for build system

Makefile.files

This Makefile.files file will do the following things:

• Define common C/C++/ASM source and include directories

• Define common C/C++/ASM macros

• Include Makefile.files.<SOC> which will include all the source code related to the SOC (page 25) and BOARD
(page 26)

– Makefile.files.hbird: Used to include source code for HummingBird SoC (page 118)

3.2. Build System based on Makefile 21

HummingBird SDK, Release 0.1.4

Makefile.soc

This Makefile.soc will include valid makefiles located in <HBIRD_SDK_ROOT>/SoC/<SOC>/build.mk according
to the SOC (page 25) makefile variable setting.

It will define the following items:

• DOWNLOAD and CORE variables

– For HummingBird SoC (page 118), we can support all the modes defined in DOWNLOAD (page 26), and
CORE list defined in Makefile.core (page 23)

– For HummingBird SoC V2 (page 121), we can support all the modes defined in DOWNLOAD (page 26),
and CORE list defined in Makefile.core (page 23)

• Linker script used according to the DOWNLOAD mode settings

• OpenOCD debug configuration file used for the SoC and Board

• Some extra compiling or debugging options

A valid SoC should be organized like this, take hbirdv2 as example:

SoC/hbirdv2
Board

hbird_fpga_eval
Include

board_hbird_fpga_eval.h
hbird_sdk_hal.h

Source
GCC

openocd_hbirdv2.cfg
build.mk
Common

Include
hbirdv2.h
... ...
hbirdv2_uart.h
hbird_sdk_soc.h
system_hbirdv2.h

Source
Drivers

... ...
hbirdv2_uart.c

GCC
intexc_hbirdv2.S
startup_hbirdv2.S

Stubs
read.c
... ...
write.c

hbirdv2_common.c
system_hbirdv2.c

22 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

Makefile.rtos

This Makefile.rtos will include <HBIRD_SDK_ROOT>/OS/<RTOS>/build.mk according to our RTOS (page 29)
variable.

A valid rtos should be organized like this, take UCOSII as example:

OS/UCOSII/
arch
build.mk
license.txt
readme.md
source

If no RTOS (page 29) is chosen, then RTOS code will not be included during compiling, user will develop baremetal
application.

If FreeRTOS, UCOSII or RTThread RTOS is chosen, then FreeRTOS UCOSII, or RTThread source code will be
included during compiling, and extra compiler option -DRTOS_$(RTOS_UPPER) will be passed, then user can develop
RTOS application.

For example, if FreeRTOS is selected, then -DRTOS_FREERTOS compiler option will be passed.

Makefile.core

This Makefile.core is used to define the RISC-V ARCH and ABI used during compiling of the CORE list supported.

If you want to add a new CORE, you need to add a new line before SUPPORTED_CORES, and append the new
CORE to SUPPORTED_CORES.

For example, if you want to add a new CORE called e207, and the e207’s ARCH and ABI are rv32imafdc and
ilp32d, then you can add a new line like this E207_CORE_ARCH_ABI = rv32imafdc ilp32d, and append e207 to
SUPPORTED_CORES like this SUPPORTED_CORES = e201 e201e e203 e205 e205f e205fd e207

Note:

• The appended new CORE need to lower-case, e.g. e207

• The new defined variable E207_CORE_ARCH_ABI need to be all upper-case.

Makefile.global

This Makefile.global file is an optional file, and will not be tracked by git, user can create own Makefile.global in
<HBIRD_SDK_ROOT>/Build directory.

In this file, user can define custom SOC, BOARD, DOWNLOAD options to overwrite the default configuration.

For example, if you will use only the HummingBird Evaluation Kit (page 122), you can create the
<HBIRD_SDK_ROOT>/Build/Makefile.global as below:

SOC ?= hbird
BOARD ?= hbird_eval
DOWNLOAD ?= flashxip

Note:

3.2. Build System based on Makefile 23

HummingBird SDK, Release 0.1.4

• If you add above file, then you can build, run, debug application without passing SOC, BOARD and DOWN-
LOAD variables using make command for HummingBird Evaluation Kit (page 122) board, e.g.

– Build and run application for HummingBird Evaluation Kit (page 122): make run

– Debug application for HummingBird Evaluation Kit (page 122): make debug

• If you create the Makefile.global like above sample code, you will also be able to use HummingBird SDK build
system as usually, it will only change the default SOC, BOARD and DOWNLOAD, but you can still override
the default variable using make command, such as make SOC=hbird BOARD=hbird_eval DOWNLOAD=ilm

Makefile.local

As the Makefile.global (page 23) is used to override the default Makefile configurations, and the Makefile.local is used
to override application level Makefile configurations, and also this file will not be tracked by git.

User can create Makefile.local file in any of the application folder, placed together with the application Makefile,
for example, you can create Makefile.local in application/baremetal/helloworld to override default make
configuration for this helloworld application.

If you want to change the default board for helloworld to use HummingBird Evaluation Kit (page 122), you can create
application/baremetal/helloworld/Makefile.local as below:

SOC ?= hbird
BOARD ?= hbird_eval
DOWNLOAD ?= flashxip

Note:

• This local make configuration will override global and default make configuration.

• If you just want to change only some applications’ makefile configuration, you can add and update Makefile.
local for those applications.

3.2.2 Makefile targets of make command

Here is a list of the Make targets supported by HummingBird SDK Build System (page 24).

Table 1: Make targets supported by HummingBird SDK Build System
target description
help display help message of HummingBird SDK build system
info display selected configuration information
all build application with selected configuration
clean clean application with selected configuration
dasm build and dissemble application with selected configuration
bin build and generate application binary with selected configuration
upload build and upload application with selected configuration
run_openocd run openocd server with selected configuration
run_gdb build and start gdb process with selected configuration
debug build and debug application with selected configuration

24 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

Note:

• The selected configuration is controlled by Makefile variables passed by make command (page 25)

• For run_openocd and run_gdb target, if you want to change a new gdb port, you can pass the variable
GDB_PORT (page 27)

3.2.3 Makefile variables passed by make command

In HummingBird SDK build system, we exposed the following Makefile variables which can be passed via make
command.

• SOC (page 25)

• BOARD (page 26)

• DOWNLOAD (page 26)

• CORE (page 27)

• SIMULATION (page 27)

• GDB_PORT (page 27)

• V (page 28)

• SILENT (page 28)

Note:

• These variables can also be used and defined in application Makefile

• If you just want to fix your running board of your application, you can just define these variables in application
Makefile, if defined, then you can simply use make clean, make upload or make debug, etc.

SOC

SOC variable is used to declare which SoC is used in application during compiling.

You can easily find the supported SoCs in the <HBIRD_SDK_ROOT>/SoC directory.

Currently we support the following SoCs, see Supported SoCs (page 25).

Table 2: Supported SoCs
SOC Reference
hbird HummingBird SoC (page 118)
hbirdv2 HummingBird SoC V2 (page 121)

3.2. Build System based on Makefile 25

HummingBird SDK, Release 0.1.4

BOARD

Board variable is used to declare which Board is used in application during compiling.

The BOARD variable should match the supported boards of chosen SOC. You can easily find the supported Boards in
the <HBIRD_SDK_ROOT>/<SOC>/Board/ directory.

• Supported Boards when SOC=hbird (page 26)

• Supported Boards when SOC=hbirdv2 (page 26)

Currently we support the following Boards.

Table 3: Supported Boards when SOC=hbird
BOARD Reference
hbird_eval HummingBird Evaluation Kit (page 122)

Table 4: Supported Boards when SOC=hbirdv2
BOARD Reference
hbird_ddr_200t DDR200T Evaluation Kit (page 124)
hbird_mcu_200tMCU200T Evaluation Kit (page 126)

Note:

• If you only specify SOC variable in make command, it will use default BOARD and CORE option defined in
Makefile.soc.<SOC>

DOWNLOAD

DOWNLOAD variable is used to declare the download mode of the application, currently it has these modes supported
as described in table Supported download modes (page 26)

Table 5: Supported download modes
DOWN-
LOAD

Description

ilm

Program will be download into ilm/ram and
run directly in ilm/ram, program lost when poweroff

flash

Program will be download into flash, when running,
program will be copied to ilm/ram and run in ilm/ram

flashxip Program will to be download into flash and run directly in Flash

Note:

• HummingBird SoC (page 118) support all the download modes.

26 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

• flashxip mode in HummingBird SoC (page 118) is very slow due to the CORE frequency is very slow, and Flash
speed is slow

CORE

CORE variable is used to declare the HummingBird RISC-V processor core of the application.

Currently it has these cores supported as described in table Supported HummingBird RISC-V Processor cores (page 27).

Table 6: Supported HummingBird RISC-V Processor cores
CORE ARCH ABI
e203e rv32eac ilp32e
e203 rv32imac ilp32

SIMULATION

If SIMULATION=1, it means the program is optimized for hardware simulation environment.

Currently if SIMULATION=1, it will pass compile option -DCFG_SIMULATION, application can use this
CFG_SIMULATION to optimize program for hardware simulation environment.

Note:

• Currently the benchmark applications in application/baremetal/benchmark used this optimization

GDB_PORT

Note:

• This new variable GDB_PORT is added in HummingBird SDK since version 0.2.4

This variable is not used usually, by default the GDB_PORT variable is 3333.

If you want to change a debug gdb port for openocd and gdb when run run_openocd and run_gdb target, you can
pass a new port such as 3344 to this variable.

For example, if you want to debug application using run_openocd and run_gdb and specify a different port other than
3333.

You can do it like this, take hbird_eval board for example, such as port 3344:

• Open openocd server: make SOC=hbird BOARD=hbird_eval CORE=e203 GDB_PORT=3344 run_openocd

• connect gdb with openocd server: make SOC=hbird BOARD=hbird_eval CORE=e203 GDB_PORT=3344
run_gdb

3.2. Build System based on Makefile 27

HummingBird SDK, Release 0.1.4

BANNER

If BANNER=0, when program is rebuilt, then the banner message print in console will not be print, banner print is
default enabled via HBIRD_BANNER=1 in hbird_sdk_hal.h.

when BANNER=0, an macro -DHBIRD_BANNER=0 will be passed in Makefile.

The banner message looks like this:

HummingBird SDK Build Time: Jul 23 2021, 10:22:50
Download Mode: ILM
CPU Frequency 15999959 Hz

V

If V=1, it will display compiling message in verbose including compiling options.

By default, no compiling options will be displayed in make console message just to print less message and make the
console message cleaner. If you want to see what compiling option is used, please pass V=1 in your make command.

SILENT

If SILENT=1, it will not display any compiling messsage.

If you don’t want to see any compiling message, you can pass SILENT=1 in your make command.

3.2.4 Makefile variables used only in Application Makefile

The following variables should be used in application Makefile at your demand, e.g. application/baremetal/
timer_test/Makefile.

• TARGET (page 29)

• HBIRD_SDK_ROOT (page 29)

• RTOS (page 29)

• MIDDLEWARE (page 29)

• PFLOAT (page 29)

• NEWLIB (page 30)

• NOGC (page 30)

• RTTHREAD_MSH (page 30)

28 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

TARGET

This is a necessary variable which must be defined in application Makefile.

It is used to set the name of the application, it will affect the generated target filenames.

HBIRD_SDK_ROOT

This is a necessary variable which must be defined in application Makefile.

It is used to set the path of HummingBird SDK Root, usually it should be set as relative path, but you can also set
absolute path to point to HummingBird SDK.

RTOS

RTOS variable is used to choose which RTOS will be used in this application.

You can easily find the supported RTOSes in the <HBIRD_SDK_ROOT>/OS directory.

• If RTOS is not defined, then baremetal service will be enabled with this application. See examples in
application/baremetal.

• If RTOS is set the the following values, RTOS service will be enabled with this application.

– FreeRTOS: FreeRTOS service will be enabled, you can include FreeRTOS header files now, and use FreeR-
TOS API, for FreeRTOS application, you need to have an FreeRTOSConfig.h header file prepared in you
application. See examples in application/freertos.

– UCOSII: UCOSII service will be enabled, you can include UCOSII header files now, and use UCOSII API,
for UCOSII application, you need to have app_cfg.h, os_cfg.h and app_hooks.c files prepared in you
application. See examples in application/ucosii.

– RTThread: RT-Thread service will be enabled, you can include RT-Thread header files now, and use RT-
Thread API, for UCOSII application, you need to have an rtconfig.h header file prepared in you appli-
cation. See examples in application/rtthread.

MIDDLEWARE

MIDDLEWARE variable is used to select which middlewares should be used in this application.

You can easily find the available middleware components in the <HBIRD_SDK_ROOT>/Components directory.

• If MIDDLEWARE is not defined, not leave empty, no middlware package will be selected.

• If MIDDLEWARE is defined with more than 1 string, such as fatfs tjpgd, then these two middlewares will
be selected.

PFLOAT

PFLOAT variable is used to enable floating point value print when using the newlib nano(NEWLIB=nano).

If you don’t use newlib nano, this variable will have no affect.

3.2. Build System based on Makefile 29

HummingBird SDK, Release 0.1.4

NEWLIB

NEWLIB variable is used to select which newlib version will be chosen.

If NEWLIB=nano, then newlib nano will be selected. About newlib, please visit https://sourceware.org/newlib/
README.

If NEWLIB=, then normal newlib will be used.

NOGC

NOGC variable is used to control whether to enable gc sections to reduce program code size or not, by default GC is
enabled to reduce code size.

When GC is enabled, these options will be added:

• Adding to compiler options: -ffunction-sections -fdata-sections

• Adding to linker options: -Wl,--gc-sections -Wl,--check-sections

If you don’t want disable this GC feature, you can set NOGC=1, GC feature will remove sections for you, but sometimes
it might remove sections that are useful, e.g. For HummingBird SDK test cases, we use ctest framework, and we need
to set NOGC=1 to disable GC feature.

RTTHREAD_MSH

RTTHREAD_MSH variable is valid only when RTOS is set to RTThread.

When RTTHREAD_MSH is set to 1:

• The RTThread MSH component source code will be included

• The MSH thread will be enabled in the background

• Currently the msh getchar implementation is using a weak function implemented in rt_hw_console_getchar
in OS/RTTThread/libcpu/risc-v/nuclei/cpuport.c

3.2.5 Build Related Makefile variables used only in Application Makefile

If you want to specify additional compiler flags, please follow this guidance to modify your application Makefile.

HummingBird SDK build system defined the following variables to control the build options or flags.

• INCDIRS (page 31)

• C_INCDIRS (page 31)

• CXX_INCDIRS (page 31)

• ASM_INCDIRS (page 31)

• SRCDIRS (page 32)

• C_SRCDIRS (page 32)

• CXX_SRCDIRS (page 32)

• ASM_SRCDIRS (page 32)

• C_SRCS (page 32)

• CXX_SRCS (page 33)

30 Chapter 3. Developer Guide

https://sourceware.org/newlib/README
https://sourceware.org/newlib/README

HummingBird SDK, Release 0.1.4

• ASM_SRCS (page 33)

• COMMON_FLAGS (page 33)

• CFLAGS (page 33)

• CXXFLAGS (page 33)

• ASMFLAGS (page 33)

• LDFLAGS (page 34)

• LDLIBS (page 34)

• LIBDIRS (page 34)

• LINKER_SCRIPT (page 34)

INCDIRS

This INCDIRS is used to pass C/CPP/ASM include directories.

e.g. To include current directory . and inc for C/CPP/ASM

INCDIRS = . inc

C_INCDIRS

This C_INCDIRS is used to pass C only include directories.

e.g. To include current directory . and cinc for C only

C_INCDIRS = . cinc

CXX_INCDIRS

This CXX_INCDIRS is used to pass CPP only include directories.

e.g. To include current directory . and cppinc for CPP only

CXX_INCDIRS = . cppinc

ASM_INCDIRS

This ASM_INCDIRS is used to pass ASM only include directories.

e.g. To include current directory . and asminc for ASM only

ASM_INCDIRS = . asminc

3.2. Build System based on Makefile 31

HummingBird SDK, Release 0.1.4

SRCDIRS

This SRCDIRS is used to set the source directories used to search the C/CPP/ASM source code files, it will not do
recursively.

e.g. To search C/CPP/ASM source files in directory . and src

SRCDIRS = . src

C_SRCDIRS

This C_SRCDIRS is used to set the source directories used to search the C only source code files(*.c, *.C), it will not
do recursively.

e.g. To search C only source files in directory . and csrc

C_SRCDIRS = . csrc

CXX_SRCDIRS

This CXX_SRCDIRS is used to set the source directories used to search the CPP only source code files(*.cpp, *.CPP),
it will not do recursively.

e.g. To search CPP only source files in directory . and cppsrc

CXX_SRCDIRS = . cppsrc

ASM_SRCDIRS

This ASM_SRCDIRS is used to set the source directories used to search the ASM only source code files(*.s, *.S), it
will not do recursively.

e.g. To search ASM only source files in directory . and asmsrc

ASM_SRCDIRS = . asmsrc

C_SRCS

If you just want to include a few of C source files in directories, you can use this C_SRCS variable.

e.g. To include main.c and src/hello.c

C_SRCS = main.c src/hello.c

32 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

CXX_SRCS

If you just want to include a few of CPP source files in directories, you can use this CXX_SRCS variable.

e.g. To include main.cpp and src/hello.cpp

CXX_SRCS = main.cpp src/hello.cpp

ASM_SRCS

If you just want to include a few of ASM source files in directories, you can use this ASM_SRCS variable.

e.g. To include asm.s and src/test.s

ASM_SRCS = asm.s src/test.s

COMMON_FLAGS

This COMMON_FLAGS variable is used to define common compiler flags to all c/asm/cpp compiler.

For example, you can add a newline COMMON_FLAGS += -O3 -funroll-loops -fpeel-loops in your application
Makefile and these options will be passed to C/ASM/CPP compiler.

CFLAGS

Different to COMMON_FLAGS, this CFLAGS variable is used to define common compiler flags to C compiler only.

For example, you can add a newline CFLAGS += -O3 -funroll-loops -fpeel-loops in your application Makefile
and these options will be passed to C compiler.

CXXFLAGS

Different to COMMON_FLAGS, this CXXFLAGS variable is used to define common compiler flags to cpp compiler
only.

For example, you can add a newline CXXFLAGS += -O3 -funroll-loops -fpeel-loops in your application Make-
file and these options will be passed to cpp compiler.

ASMFLAGS

Different to COMMON_FLAGS, this ASMFLAGS variable is used to define common compiler flags to asm compiler
only.

For example, you can add a newline ASMFLAGS += -O3 -funroll-loops -fpeel-loops in your application Make-
file and these options will be passed to asm compiler.

3.2. Build System based on Makefile 33

HummingBird SDK, Release 0.1.4

LDFLAGS

This LDFLAGS is used to pass extra linker flags, for example, if you want to link extra math library, you can add a
newline LDFLAGS += -lm in you application Makefile.

Libraries (-lfoo) could also be added to the LDLIBS variable instead.

LDLIBS

This LDLIBS variable is library flags or names given to compilers when they are supposed to invoke the linker.

Non-library linker flags, such as -L, should go in the LDFLAGS variable.

LIBDIRS

This LIBDIRS variable is used to store the library directories, which could be used together with LDLIBS.

For example, if you have a library located in $(HBIRD_SDK_ROOT)/Library/DSP/libnmsis_dsp_rv32imac.a, and
you want to link it, then you can define these lines:

LDLIBS = -lnmsis_dsp_rv32imac
LIBDIRS = $(HBIRD_SDK_ROOT)/Library/DSP

LINKER_SCRIPT

This LINKER_SCRIPT variable could be used to set the link script of the application.

By default, there is no need to set this variable, since the build system will define a default linker script for application
according to the build configuration. If you want to define your own linker script, you can set this variable.

For example, LINKER_SCRIPT := gcc.ld.

3.3 Application Development

3.3.1 Overview

Here will describe how to develop an HummingBird SDK application.

To develop a HummingBird SDK application from scratch, you can do the following steps:

1. Create a directory to place your application code.

2. Create Makefile in the new created directory, the minimal Makefile should look like this

1 TARGET = your_target_name
2

3 HBIRD_SDK_ROOT = path/to/your_hbird_sdk_root
4

5 SRCDIRS = .
6

7 INCDIRS = .
8

9 include $(HBIRD_SDK_ROOT)/Build/Makefile.base

34 Chapter 3. Developer Guide

HummingBird SDK, Release 0.1.4

3. Copy or create your application code in new created directory.

Note:

• If you just want to SoC related resource, you can include header file hbird_sdk_soc.h in your application
code.

• If you just want to SoC and Board related resource, you can include header file hbird_sdk_hal.h in your
application code.

• For simplity, we recomment you to use hbird_sdk_hal.h header file

4. Follow Build System based on Makefile (page 19) to change your application Makefile.

3.3.2 Add Extra Source Code

If you want to add extra source code, you can use these makefile variables:

To add all the source code in directories, recursive search is not supported.

• SRCDIRS (page 32): Add C/CPP/ASM source code located in the directories defined by this variable.

• C_SRCDIRS (page 32): Add C only source code located in the directories defined by this variable.

• CXX_SRCDIRS (page 32): Add CPP only source code located in the directories defined by this variable.

• ASM_SRCDIRS (page 32): Add ASM only source code located in the directories defined by this variable.

To add only selected source code in directory

• C_SRCS (page 32): Add C only source code files defined by this variable.

• CXX_SRCS (page 33): Add CPP only source code files defined by this variable.

• ASM_SRCS (page 33): Add ASM only source code files defined by this variable.

3.3.3 Add Extra Include Directory

If you want to add extra include directories, you can use these makefile variables:

• INCDIRS (page 31): Include the directories defined by this variable for C/ASM/CPP code during compiling.

• C_INCDIRS (page 31): Include the directories defined by this variable for C only code during compiling.

• CXX_INCDIRS (page 31): Include the directories defined by this variable for CPP only code during compiling.

• ASM_INCDIRS (page 31): Include the directories defined by this variable for ASM only code during compiling.

3.3.4 Add Extra Build Options

If you want to add extra build options, you can use these makefile variables:

• COMMON_FLAGS (page 33): This will add compiling flags for C/CPP/ASM source code.

• CFLAGS (page 33): This will add compiling flags for C source code.

• CXXFLAGS (page 33): This will add compiling flags for CPP source code.

• ASMFLAGS (page 33): This will add compiling flags for ASM source code.

• LDFLAGS (page 34): This will add linker flags when linking.

3.3. Application Development 35

HummingBird SDK, Release 0.1.4

• LDLIBS (page 34): This will add extra libraries need to be linked.

• LIBDIRS (page 34): This will add extra library directories to be searched by linker.

3.3.5 Optimize For Code Size

If you want to optimize your application for code size, you set COMMON_FLAGS in your application Makefile like this:

COMMON_FLAGS := -Os

If you want to optimize code size even more, you use this link time optimization(LTO) as below:

COMMON_FLAGS := -Os -flto

see demo_plic (page 133) for example usage of optimize for code size.

For more details about gcc optimization, please refer to Options That Control Optimization in GCC19.

3.3.6 Change Link Script

If you want to change the default link script defined by your make configuration(SOC, BOARD, DOWNLOAD). You
can use LINKER_SCRIPT (page 34) variable to set your linker script.

3.3.7 Set Default Make Options

Set Default Global Make Options For HummingBird SDK

If you want to change the global Make options for the HummingBird SDK, you can add the Makefile.global (page 23).

Set Local Make Options For Your Application

If you want to change the application level Make options, you can add the Makefile.local (page 24).

3.4 Build HummingBird SDK Documentation

In HummingBird SDK, we use Sphinx and restructured text as documentation tool.

Here we only provide steps to build sphinx documentation in Linux environment.

3.4.1 Install Tools

To build this the documentation, you need to have these tools installed.

• Python3

• Python Pip tool

Then you can use the pip tool to install extra python packages required to build the documentation.
19 https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Optimize-Options.html#Optimize-Options

36 Chapter 3. Developer Guide

https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Optimize-Options.html#Optimize-Options

HummingBird SDK, Release 0.1.4

pip install -r doc/requirements.txt

3.4.2 Build The Documentation

Then you can build the documentation using the following command:

cd to document folder
cd doc
Build Sphinx documentation
make html

The documentation will be generated in doc/build/html folder.

You can open the doc/build/html/index.html in your browser to view the details.

3.4. Build HummingBird SDK Documentation 37

HummingBird SDK, Release 0.1.4

38 Chapter 3. Developer Guide

CHAPTER

FOUR

CONTRIBUTING

Contributing to HummingBird SDK project is always welcome.

You can always do a lot of things to help HummingBird SDK project improve and grow stronger.

• Port your HummingBird SoC into HummingBird SDK (page 39)

• Submit your issue (page 43)

• Submit your pull request (page 43)

4.1 Port your HummingBird SoC into HummingBird SDK

If you want to port you HummingBird RISC-V Processor Core based Board to HummingBird SDK, you need to follow
these steps:

Assume your SoC name is ncstar, based on HummingBird RISC-V core e203, and RISCV_ARCH is rv32imafc,
RISCV_ABI is ilp32f, and you made a new board called ncstar_eval, and this SoC only support FlashXIP down-
load mode.

Make sure the SoC name and Board name used in this HummingBird SDK is all in lowercase.

1. Create a folder named ncstar under SoC directory.

• Create folder named Board and Common under ncstar

• Create directory structure under ncstar/Common like below:

<ncstar/Common>
Include

peripheral_or_device_headers.h
......
ncstar.h
hbird_sdk_soc.h
system_ncstar.h

Source
Drivers

peripheral_or_device_sources.c
......

GCC
intexc_ncstar.S
startup_ncstar.S

Stubs
clock_getres.c

(continues on next page)

39

HummingBird SDK, Release 0.1.4

(continued from previous page)

clock_gettime.c
clock_settime.c
close.c
execve.c
exit.c
fork.c
fstat.c
getpid.c
gettimeofday.c
isatty.c
kill.c
link.c
lseek.c
open.c
read.c
sbrk.c
stat.c
times.c
unlink.c
wait.c
write.c

ncstar_soc.c
system_ncstar.c

Note:

– The folder names must be exactly the same as the directory structure showed

– peripheral_or_device_sources.c means the SoC peripheral driver source code files, such as uart, gpio,
i2c, spi driver sources, usually get from the SoC firmware library, it should be placed in Drivers folder.

– peripheral_or_device_headers.h means the SoC peripheral driver header files, such as uart, gpio, i2c,
spi driver headers, usually get from the SoC firmware library, it should be placed in Include folder.

– The Stubs folder contains the stub code files for newlib c library porting code, mainly _write, _read,
_sbrk stub function

– The GCC folder contains startup and exeception/interrupt assemble code, if your board share the same
linker script files, you can also put link script files here, the linker script files name rules can refer to
previously supported hbirdv2 SoC.

– The hbird_sdk_soc.h file is very important, it is a HummingBird RISC-V SoC Header file used by
common application which can run accoss different SoC, it should include the SoC device header file
ncstar.h

• Create directory structure under ncstar/Board like below:

<ncstar/Board>
ncstar_eval

Include
ncstar_eval.h
hbird_sdk_hal.h

openocd_ncstar.cfg
Source

(continues on next page)

40 Chapter 4. Contributing

HummingBird SDK, Release 0.1.4

(continued from previous page)

GCC
gcc_ncstar_flashxip.ld

ncstar_eval.c

Note:

– The ncstar_eval is the board folder name, if you have a new board, you can create a new folder in the
same level

– Include folder contains the board related header files

– Source folder contains the board related source files

– GCC folder is optional, if your linker script for the board is different to the SoC, you need to put your
linker script here

– openocd_ncstar.cfg file is the board related openocd debug configuration file

– ncstar_eval.h file contains board related definition or APIs and also include the SoC header file, you
can refer to previously supported board such as hbird_eval

– hbird_sdk_hal.h is very important, it includes the ncstar_eval.h header file. This file is used in
application as entry header file to access board and SoC resources.

2. Create Makefiles related to ncstar in HummingBird SDK build system (page 19)

• Create SoC/ncstar/build.mk, the file content should be like this:

Put your SoC build configurations below

BOARD ?= ncstar_eval

override DOWNLOAD and CORE variable for NCSTAR SoC
even though it was set with a command argument
override CORE := n307
override DOWNLOAD := flashxip

HBIRD_SDK_SOC_BOARD := $(HBIRD_SDK_SOC)/Board/$(BOARD)
HBIRD_SDK_SOC_COMMON := $(HBIRD_SDK_SOC)/Common

#no ilm on NCSTAR SoC
LINKER_SCRIPT ?= $(HBIRD_SDK_SOC_BOARD)/Source/GCC/gcc_ncstar_flashxip.ld
OPENOCD_CFG ?= $(HBIRD_SDK_SOC_BOARD)/openocd_ncstar.cfg

RISCV_ARCH ?= rv32imac
RISCV_ABI ?= ilp32

Put your Source code Management configurations below

INCDIRS += $(HBIRD_SDK_SOC_COMMON)/Include

C_SRCDIRS += $(HBIRD_SDK_SOC_COMMON)/Source \
$(HBIRD_SDK_SOC_COMMON)/Source/Drivers \
$(HBIRD_SDK_SOC_COMMON)/Source/Stubs

(continues on next page)

4.1. Port your HummingBird SoC into HummingBird SDK 41

HummingBird SDK, Release 0.1.4

(continued from previous page)

ASM_SRCS += $(HBIRD_SDK_SOC_COMMON)/Source/GCC/startup_ncstar.S \
$(HBIRD_SDK_SOC_COMMON)/Source/GCC/intexc_ncstar.S

Add extra board related source files and header files
VALID_HBIRD_SDK_SOC_BOARD := $(wildcard $(HBIRD_SDK_SOC_BOARD))
ifneq ($(VALID_HBIRD_SDK_SOC_BOARD),)
INCDIRS += $(VALID_HBIRD_SDK_SOC_BOARD)/Include
C_SRCDIRS += $(VALID_HBIRD_SDK_SOC_BOARD)/Source
endif

3. If you have setup the source code and build system correctly, then you can test your SoC using the common
applications, e.g.

Test helloworld application for ncstar_eval board
cd to helloworld application directory
cd application/baremetal/helloworld
clean and build helloworld application for ncstar_eval board
make SOC=ncstar BOARD=ncstar_eval clean all
connect your board to PC and install jtag driver, open UART terminal
set baudrate to 115200bps and then upload the built application
to the ncstar_eval board using openocd, and you can check the
run messsage in UART terminal
make SOC=ncstar BOARD=ncstar_eval upload

Note:

• You can always refer to previously supported SoCs for reference, such as the hbird SoC.

• The hbird SoC is a FPGA based evaluation platform, it have ilm and dlm, so it support three download modes
(page 26)

• The hbird_sdk_soc.h must be created in SoC include directory, it must include the device header file <device>.h
and SoC firmware library header files.

• The hbird_sdk_hal.h must be created in Board include directory, it must include hbird_sdk_soc.h and board
related header files.

42 Chapter 4. Contributing

HummingBird SDK, Release 0.1.4

4.2 Submit your issue

If you find any issue related to HummingBird SDK project, you can open an issue in https://github.com/riscv-mcu/
hbird-sdk/issues

4.3 Submit your pull request

If you want to contribute your code to HummingBird SDK project, you can open an pull request in https://github.com/
riscv-mcu/hbird-sdk/pulls

Regarding to code style, please refer to Code Style (page 19).

4.4 Git commit guide

If you want to contribute your code, make sure you follow the guidance of git commit, see here https://chris.beams.io/
posts/git-commit/ for details

• Use the present tense (“Add feature” not “Added feature”)

• Use the imperative mood (“Move cursor to. . . ” not “Moves cursor to. . . ”)

• Limit the first line to 80 characters or less

• Refer github issues and pull requests liberally using #

• Write the commit message with an category name and colon:

– soc: changes related to soc

– board: changes related to board support packages

– nmsis: changes related to NMSIS

– build: changes releated to build system

– library: changes related to libraries

– rtos: changes related to rtoses

– test: changes related to test cases

– doc: changes related to documentation

– ci: changes related to ci environment

– application: changes related to applications

– misc: changes not categorized

– env: changes related to environment

4.2. Submit your issue 43

https://github.com/riscv-mcu/hbird-sdk/issues
https://github.com/riscv-mcu/hbird-sdk/issues
https://github.com/riscv-mcu/hbird-sdk/pulls
https://github.com/riscv-mcu/hbird-sdk/pulls
https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/

HummingBird SDK, Release 0.1.4

44 Chapter 4. Contributing

CHAPTER

FIVE

DESIGN AND ARCHITECTURE

5.1 Overview

HummingBird SDK is developed based on Modified NMSIS, all the SoCs supported in it are following the Modified
NMSIS-Core Device Templates Guidance.

So this HummingBird SDK can be treated as a software guide for how to use NMSIS.

The build system we use in HummingBird SDK is Makefile, it support both Windows and Linux, and when we
develop HummingBird SDK build system, we keep it simple, so it make developer can easily port this HummingBird
SDK software code to other IDEs.

Click Overview (page 1) to learn more about the HummingBird SDK project overview.

For example, we have ported HummingBird SDK to use Segger embedded Studio and PlatformIO.

5.1.1 Directory Structure

To learn deeper about HummingBird SDK project, the directory structure is a good start point.

Below, we will describe our design about the HummingBird SDK directory structure:

Here is the directory structure for this HummingBird SDK.

$HBIRD_SDK_ROOT
application

baremetal
freertos
ucosii
rtthread

Build
gmsl
Makefile.base
Makefile.conf
Makefile.components
Makefile.core
Makefile.files
Makefile.global
Makefile.misc
Makefile.rtos
Makefile.rules
Makefile.soc

doc
(continues on next page)

45

HummingBird SDK, Release 0.1.4

(continued from previous page)

build
source
Makefile
requirements.txt

NMSIS
Core
DSP
NN
Library

OS
FreeRTOS
UCOSII
RTThread

SoC
hbird
hbirdv2

test
core
ctest.h
LICENSE
README.md

LICENSE
Makefile
NMSIS_VERSION
README.md
setup.bat
setup.sh

• application

This directory contains all the application softwares for this HummingBird SDK.

The application code can be divided into mainly 4 parts, which are:

– Baremetal applications, which will provide baremetal applications without any OS usage, these applica-
tions will be placed in application/baremetal/ folder.

– FreeRTOS applications, which will provide FreeRTOS applications using FreeRTOS RTOS, placed in
application/freertos/ folder.

– UCOSII applications, which will provide UCOSII applications using UCOSII RTOS, placed in applica-
tion/ucosii/ folder.

– RTThread applications, which will provide RT-Thread applications using RT-Thread RTOS, placed in
application/rtthread/ folder.

• SoC

This directory contains all the supported SoCs for this HummingBird SDK, the directory name for SoC and its
boards should always in lower case.

Here we mainly support HummingBird processor cores running in Hummingbird FPGA evaluation board, the
support package placed in SoC/hbird/ and SoC/hbirdv2/.

In each SoC’s include directory, hbird_sdk_soc.h must be provided, and include the soc header file, for example,
SoC/hbird/Common/Include/hbird_sdk_soc.h.

46 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

In each SoC Board’s include directory, hbird_sdk_hal.h must be provided, and include the board header file, for
example, SoC/hbird/Board/hbird_eval/Include/hbird_sdk_hal.h.

• Build

This directory contains the key part of the build system based on Makefile for HummingBird SDK.

• NMSIS

This directory contains the modified NMSIS header files, which is widely used in this HummingBird SDK, you
can check the NMSIS_VERSION file to know the current NMSIS version used in HBird-SDK.

We will also sync the changes in NMSIS project when it provided a new release.

• OS

This directory provided two RTOS package we suppported which are FreeRTOS and UCOSII.

• LICENSE

HummingBird SDK license file.

• NMSIS_VERSION

NMSIS Version file. It will show current NMSIS version used in HummingBird SDK.

• Makefile

An external Makefile just for build, run, debug application without cd to any coresponding application directory,
such as application/baremetal/helloworld/.

• setup.sh

HummingBird SDK environment setup script for Linux. You need to create your own setup_config.sh.

NUCLEI_TOOL_ROOT=/path/to/your_tool_root

In the $NUCLEI_TOOL_ROOT for Linux, you need to have Nuclei RISC-V GNU GCC toolchain and
OpenOCD installed as below.

$NUCLEI_TOOL_ROOT
gcc

bin
include
lib
libexec
riscv-nuclei-elf
share

openocd
bin
contrib
distro-info
OpenULINK
scripts
share

• setup.bat

HummingBird SDK environment setup bat script for Windows. You need to create your own setup_config.bat.

set NUCLEI_TOOL_ROOT=\path\to\your_tool_root

5.1. Overview 47

HummingBird SDK, Release 0.1.4

In the %NUCLEI_TOOL_ROOT% for Windows, you need to have Nuclei RISC-V GNU GCC toolchain,
necessary Windows build tools and OpenOCD installed as below.

%NUCLEI_TOOL_ROOT%
build-tools

bin
gnu-mcu-eclipse
licenses

gcc
bin
include
lib
libexec
riscv-nuclei-elf
share

openocd
bin
contrib
distro-info
OpenULINK
scripts
share

5.1.2 Project Components

This HummingBird SDK project components is list as below:

• HummingBird RISC-V Processor (page 48): How HummingBird RISC-V Processor Core is used in Humming-
Bird SDK

• SoC (page 118): How HummingBird RISC-V processor code based SoC device is supported in HummingBird
SDK

• Board (page 122): How HummingBird RISC-V based SoC’s Board is supported in HummingBird SDK

• Peripheral (page 127): How to use the peripheral driver in HummingBird SDK

• RTOS (page 128): What RTOSes are supported in HummingBird SDK

• Application (page 130): How to use pre-built applications in HummingBird SDK

5.2 HummingBird RISC-V Processor

HummingBird RISC-V processor core are following and compatible to RISC-V standard architecture, but there might
be some additions and enhancements to the original standard spec.

Click RISC-V Spec20 to learn more about Official RISC-V Instruction Set Architecture.
20 https://riscv.org/specifications/

48 Chapter 5. Design and Architecture

https://riscv.org/specifications/

HummingBird SDK, Release 0.1.4

5.2.1 Introduction

Open source HummingBird RISC-V Processor provides the following RISC-V Cores for AIoT:

• E200 series: Designed for ultra-low power consumption and embedded scenarios, perfectly replaces the arm
Cortex-M series cores.

5.2.2 NMSIS in HummingBird SDK

This HummingBird SDK is built based on the modified NMSIS21 framework, user can access NMSIS Core API
(page 49), NMSIS DSP API22 and NMSIS NN API23 provided by NMSIS24.

These modified NMSIS-Core APIs are mainly responsible for accessing HummingBird RISC-V Processor Core.

NMSIS Core For HummingBird RISC-V

NMSIS Core API

If you want to access doxygen generated NMSIS Core API, please click NMSIS Core Doxygen API Documentation.

Version Control

group NMSIS_Core_VersionControl
Version #define symbols for NMSIS release specific C/C++ source code.

We followed the semantic versioning 2.0.025 to control NMSIS version. The version format is MA-
JOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.

The header file nmsis_version.h is included by each core header so that these definitions are available.

Example Usage for NMSIS Version Check:

#if defined(__NMSIS_VERSION) && (__NMSIS_VERSION >= 0x00010105)
#warning "Yes, we have NMSIS 1.1.5 or later"

#else
#error "We need NMSIS 1.1.5 or later!"

#endif

Note: This NMSIS-Core is modified to match requirements of HummingBird RISC-V Core

21 https://github.com/Nuclei-Software/NMSIS
22 https://doc.nucleisys.com/nmsis/dsp/api/index.html
23 https://doc.nucleisys.com/nmsis/nn/api/index.html
24 https://github.com/Nuclei-Software/NMSIS

5.2. HummingBird RISC-V Processor 49

https://github.com/Nuclei-Software/NMSIS
https://doc.nucleisys.com/nmsis/dsp/api/index.html
https://doc.nucleisys.com/nmsis/nn/api/index.html
https://github.com/Nuclei-Software/NMSIS
../../doxygen/core/html/modules.html
https://semver.org/

HummingBird SDK, Release 0.1.4

Unnamed Group

__HBIRD_RISCV_REV (0x0100)
HummingBird RISC-V revision number.

Reversion number format: [15:8] revision number, [7:0] patch number

Defines

__NMSIS_VERSION_MAJOR (1U)
Represent the NMSIS major version.

The NMSIS major version can be used to differentiate between NMSIS major releases.

__NMSIS_VERSION_MINOR (0U)
Represent the NMSIS minor version.

The NMSIS minor version can be used to query a NMSIS release update including new features.

__NMSIS_VERSION_PATCH (1U)
Represent the NMSIS patch version.

The NMSIS patch version can be used to show bug fixes in this package.

__NMSIS_VERSION ((__NMSIS_VERSION_MAJOR (page 50) << 16U) | (__NMSIS_VERSION_MINOR
(page 50) << 8) | __NMSIS_VERSION_PATCH (page 50))

Represent the NMSIS Version.

NMSIS Version format: MAJOR.MINOR.PATCH

• MAJOR: __NMSIS_VERSION_MAJOR (page 50), stored in bits [31:16] of __NMSIS_VERSION
(page 50)

• MINOR: __NMSIS_VERSION_MINOR (page 50), stored in bits [15:8] of __NMSIS_VERSION
(page 50)

• PATCH: __NMSIS_VERSION_PATCH (page 50), stored in bits [7:0] of __NMSIS_VERSION
(page 50)

Compiler Control

group NMSIS_Core_CompilerControl
Compiler agnostic #define symbols for generic c/c++ source code.

The NMSIS-Core provides the header file nmsis_compiler.h with consistent #define symbols for generate C
or C++ source files that should be compiler agnostic. Each NMSIS compliant compiler should support the
functionality described in this section.

The header file nmsis_compiler.h is also included by each Device Header File <device.h> so that these defini-
tions are available.

25 https://semver.org/

50 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Defines

__has_builtin(x) (0)

__ASM __asm
Pass information from the compiler to the assembler.

__INLINE inline
Recommend that function should be inlined by the compiler.

__STATIC_INLINE static inline
Define a static function that may be inlined by the compiler.

__STATIC_FORCEINLINE __attribute__((always_inline)) static inline
Define a static function that should be always inlined by the compiler.

__NO_RETURN __attribute__((__noreturn__))
Inform the compiler that a function does not return.

__USED __attribute__((used))
Inform that a variable shall be retained in executable image.

__WEAK __attribute__((weak))
restrict pointer qualifier to enable additional optimizations.

__VECTOR_SIZE(x) __attribute__((vector_size(x)))
specified the vector size of the variable, measured in bytes

__PACKED __attribute__((packed, aligned(1)))
Request smallest possible alignment.

__PACKED_STRUCT struct __attribute__((packed, aligned(1)))
Request smallest possible alignment for a structure.

__PACKED_UNION union __attribute__((packed, aligned(1)))
Request smallest possible alignment for a union.

__UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE (page 52) *)(void *)(addr))->v)
= (val))

Pointer for unaligned write of a uint16_t variable.

__UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ (page 52) *)(const void *)(addr))->v)
Pointer for unaligned read of a uint16_t variable.

__UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE (page 52) *)(void *)(addr))->v)
= (val))

Pointer for unaligned write of a uint32_t variable.

5.2. HummingBird RISC-V Processor 51

HummingBird SDK, Release 0.1.4

__UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ (page 52) *)(const void *)(addr))->v)
Pointer for unaligned read of a uint32_t variable.

__ALIGNED(x) __attribute__((aligned(x)))
Minimum x bytes alignment for a variable.

__RESTRICT __restrict
restrict pointer qualifier to enable additional optimizations.

__COMPILER_BARRIER() __ASM (page 51) volatile("":::"memory")
Barrier to prevent compiler from reordering instructions.

__USUALLY(exp) __builtin_expect((exp), 1)
provide the compiler with branch prediction information, the branch is usually true

__RARELY(exp) __builtin_expect((exp), 0)
provide the compiler with branch prediction information, the branch is rarely true

__INTERRUPT

Use this attribute to indicate that the specified function is an interrupt handler.

Variables

__PACKED_STRUCT T_UINT16_WRITE
Packed struct for unaligned uint16_t write access.

__PACKED_STRUCT T_UINT16_READ
Packed struct for unaligned uint16_t read access.

__PACKED_STRUCT T_UINT32_WRITE
Packed struct for unaligned uint32_t write access.

__PACKED_STRUCT T_UINT32_READ
Packed struct for unaligned uint32_t read access.

Core CSR Register Access

group NMSIS_Core_CSR_Register_Access
Functions to access the Core CSR Registers.

The following functions or macros provide access to Core CSR registers.

• Core CSR Encodings (page 69)

• Core CSR Registers (page 57)

52 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Defines

__RV_CSR_SWAP(csr, val)
CSR operation Macro for csrrw instruction.

Read the content of csr register to __v, then write content of val into csr register, then return __v

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – value to store into the CSR register

Returns the CSR register value before written

__RV_CSR_READ(csr)
CSR operation Macro for csrr instruction.

Read the content of csr register to __v and return it

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

Returns the CSR register value

__RV_CSR_WRITE(csr, val)
CSR operation Macro for csrw instruction.

Write the content of val to csr register

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – value to store into the CSR register

__RV_CSR_READ_SET(csr, val)
CSR operation Macro for csrrs instruction.

Read the content of csr register to __v, then set csr register to be __v | val, then return __v

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – Mask value to be used wih csrrs instruction

Returns the CSR register value before written

__RV_CSR_SET(csr, val)
CSR operation Macro for csrs instruction.

Set csr register to be csr_content | val

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – Mask value to be used wih csrs instruction

5.2. HummingBird RISC-V Processor 53

HummingBird SDK, Release 0.1.4

__RV_CSR_READ_CLEAR(csr, val)
CSR operation Macro for csrrc instruction.

Read the content of csr register to __v, then set csr register to be __v & ~val, then return __v

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – Mask value to be used wih csrrc instruction

Returns the CSR register value before written

__RV_CSR_CLEAR(csr, val)
CSR operation Macro for csrc instruction.

Set csr register to be csr_content & ~val

Parameters

• csr – CSR macro definition defined in Core CSR Registers (page 57), eg. CSR_MSTATUS
(page 59)

• val – Mask value to be used wih csrc instruction

Functions

__STATIC_FORCEINLINE void __enable_irq (void)

Enable IRQ Interrupts.

Enables IRQ interrupts by setting the MIE-bit in the MSTATUS Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __disable_irq (void)

Disable IRQ Interrupts.

Disables IRQ interrupts by clearing the MIE-bit in the MSTATUS Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __enable_ext_irq (void)

Enable External IRQ Interrupts.

Enables External IRQ interrupts by setting the MEIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

54 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE void __disable_ext_irq (void)

Disable External IRQ Interrupts.

Disables External IRQ interrupts by clearing the MEIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __enable_timer_irq (void)

Enable Timer IRQ Interrupts.

Enables Timer IRQ interrupts by setting the MTIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __disable_timer_irq (void)

Disable Timer IRQ Interrupts.

Disables Timer IRQ interrupts by clearing the MTIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __enable_sw_irq (void)

Enable software IRQ Interrupts.

Enables software IRQ interrupts by setting the MSIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __disable_sw_irq (void)

Disable software IRQ Interrupts.

Disables software IRQ interrupts by clearing the MSIE-bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __disable_core_irq (uint32_t irq)

Disable Core IRQ Interrupt.

5.2. HummingBird RISC-V Processor 55

HummingBird SDK, Release 0.1.4

Disable Core IRQ interrupt by clearing the irq bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __enable_core_irq (uint32_t irq)

Enable Core IRQ Interrupt.

Enable Core IRQ interrupt by setting the irq bit in the MIE Register.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE uint32_t __get_core_irq_pending (uint32_t irq)

Get Core IRQ Interrupt Pending status.

Get Core IRQ interrupt pending status of irq bit.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE void __clear_core_irq_pending (uint32_t irq)

Clear Core IRQ Interrupt Pending status.

Clear Core IRQ interrupt pending status of irq bit.

Remark

Can only be executed in Privileged modes.

__STATIC_FORCEINLINE uint64_t __get_rv_cycle (void)

Read whole 64 bits value of mcycle counter.

This function will read the whole 64 bits of MCYCLE register

Remark

It will work for both RV32 and RV64 to get full 64bits value of MCYCLE

Returns The whole 64 bits value of MCYCLE

__STATIC_FORCEINLINE uint64_t __get_rv_instret (void)

Read whole 64 bits value of machine instruction-retired counter.

This function will read the whole 64 bits of MINSTRET register

56 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Remark

It will work for both RV32 and RV64 to get full 64bits value of MINSTRET

Returns The whole 64 bits value of MINSTRET

__STATIC_FORCEINLINE uint64_t __get_rv_time (void)

Read whole 64 bits value of real-time clock.

This function will read the whole 64 bits of TIME register

Remark

It will work for both RV32 and RV64 to get full 64bits value of TIME

Attention only available when user mode available

Returns The whole 64 bits value of TIME CSR

Core CSR Encoding

Core CSR Register Definitions

group NMSIS_Core_CSR_Registers
NMSIS Core CSR Register Definitions.

The following macros are used for CSR Register Defintions.

Defines

CSR_USTATUS 0x0

CSR_FFLAGS 0x1

CSR_FRM 0x2

CSR_FCSR 0x3

CSR_CYCLE 0xc00

CSR_TIME 0xc01

CSR_INSTRET 0xc02

5.2. HummingBird RISC-V Processor 57

HummingBird SDK, Release 0.1.4

CSR_HPMCOUNTER3 0xc03

CSR_HPMCOUNTER4 0xc04

CSR_HPMCOUNTER5 0xc05

CSR_HPMCOUNTER6 0xc06

CSR_HPMCOUNTER7 0xc07

CSR_HPMCOUNTER8 0xc08

CSR_HPMCOUNTER9 0xc09

CSR_HPMCOUNTER10 0xc0a

CSR_HPMCOUNTER11 0xc0b

CSR_HPMCOUNTER12 0xc0c

CSR_HPMCOUNTER13 0xc0d

CSR_HPMCOUNTER14 0xc0e

CSR_HPMCOUNTER15 0xc0f

CSR_HPMCOUNTER16 0xc10

CSR_HPMCOUNTER17 0xc11

CSR_HPMCOUNTER18 0xc12

CSR_HPMCOUNTER19 0xc13

CSR_HPMCOUNTER20 0xc14

CSR_HPMCOUNTER21 0xc15

CSR_HPMCOUNTER22 0xc16

CSR_HPMCOUNTER23 0xc17

58 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_HPMCOUNTER24 0xc18

CSR_HPMCOUNTER25 0xc19

CSR_HPMCOUNTER26 0xc1a

CSR_HPMCOUNTER27 0xc1b

CSR_HPMCOUNTER28 0xc1c

CSR_HPMCOUNTER29 0xc1d

CSR_HPMCOUNTER30 0xc1e

CSR_HPMCOUNTER31 0xc1f

CSR_SSTATUS 0x100

CSR_SIE 0x104

CSR_STVEC 0x105

CSR_SSCRATCH 0x140

CSR_SEPC 0x141

CSR_SCAUSE 0x142

CSR_SBADADDR 0x143

CSR_SIP 0x144

CSR_SPTBR 0x180

CSR_MSTATUS 0x300

CSR_MISA 0x301

CSR_MEDELEG 0x302

CSR_MIDELEG 0x303

5.2. HummingBird RISC-V Processor 59

HummingBird SDK, Release 0.1.4

CSR_MIE 0x304

CSR_MTVEC 0x305

CSR_MCOUNTEREN 0x306

CSR_MSCRATCH 0x340

CSR_MEPC 0x341

CSR_MCAUSE 0x342

CSR_MBADADDR 0x343

CSR_MIP 0x344

CSR_PMPCFG0 0x3a0

CSR_PMPCFG1 0x3a1

CSR_PMPCFG2 0x3a2

CSR_PMPCFG3 0x3a3

CSR_PMPADDR0 0x3b0

CSR_PMPADDR1 0x3b1

CSR_PMPADDR2 0x3b2

CSR_PMPADDR3 0x3b3

CSR_PMPADDR4 0x3b4

CSR_PMPADDR5 0x3b5

CSR_PMPADDR6 0x3b6

CSR_PMPADDR7 0x3b7

CSR_PMPADDR8 0x3b8

60 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_PMPADDR9 0x3b9

CSR_PMPADDR10 0x3ba

CSR_PMPADDR11 0x3bb

CSR_PMPADDR12 0x3bc

CSR_PMPADDR13 0x3bd

CSR_PMPADDR14 0x3be

CSR_PMPADDR15 0x3bf

CSR_TSELECT 0x7a0

CSR_TDATA1 0x7a1

CSR_TDATA2 0x7a2

CSR_TDATA3 0x7a3

CSR_DCSR 0x7b0

CSR_DPC 0x7b1

CSR_DSCRATCH 0x7b2

CSR_MCYCLE 0xb00

CSR_MINSTRET 0xb02

CSR_MHPMCOUNTER3 0xb03

CSR_MHPMCOUNTER4 0xb04

CSR_MHPMCOUNTER5 0xb05

CSR_MHPMCOUNTER6 0xb06

CSR_MHPMCOUNTER7 0xb07

5.2. HummingBird RISC-V Processor 61

HummingBird SDK, Release 0.1.4

CSR_MHPMCOUNTER8 0xb08

CSR_MHPMCOUNTER9 0xb09

CSR_MHPMCOUNTER10 0xb0a

CSR_MHPMCOUNTER11 0xb0b

CSR_MHPMCOUNTER12 0xb0c

CSR_MHPMCOUNTER13 0xb0d

CSR_MHPMCOUNTER14 0xb0e

CSR_MHPMCOUNTER15 0xb0f

CSR_MHPMCOUNTER16 0xb10

CSR_MHPMCOUNTER17 0xb11

CSR_MHPMCOUNTER18 0xb12

CSR_MHPMCOUNTER19 0xb13

CSR_MHPMCOUNTER20 0xb14

CSR_MHPMCOUNTER21 0xb15

CSR_MHPMCOUNTER22 0xb16

CSR_MHPMCOUNTER23 0xb17

CSR_MHPMCOUNTER24 0xb18

CSR_MHPMCOUNTER25 0xb19

CSR_MHPMCOUNTER26 0xb1a

CSR_MHPMCOUNTER27 0xb1b

CSR_MHPMCOUNTER28 0xb1c

62 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_MHPMCOUNTER29 0xb1d

CSR_MHPMCOUNTER30 0xb1e

CSR_MHPMCOUNTER31 0xb1f

CSR_MUCOUNTEREN 0x320

CSR_MSCOUNTEREN 0x321

CSR_MHPMEVENT3 0x323

CSR_MHPMEVENT4 0x324

CSR_MHPMEVENT5 0x325

CSR_MHPMEVENT6 0x326

CSR_MHPMEVENT7 0x327

CSR_MHPMEVENT8 0x328

CSR_MHPMEVENT9 0x329

CSR_MHPMEVENT10 0x32a

CSR_MHPMEVENT11 0x32b

CSR_MHPMEVENT12 0x32c

CSR_MHPMEVENT13 0x32d

CSR_MHPMEVENT14 0x32e

CSR_MHPMEVENT15 0x32f

CSR_MHPMEVENT16 0x330

CSR_MHPMEVENT17 0x331

CSR_MHPMEVENT18 0x332

5.2. HummingBird RISC-V Processor 63

HummingBird SDK, Release 0.1.4

CSR_MHPMEVENT19 0x333

CSR_MHPMEVENT20 0x334

CSR_MHPMEVENT21 0x335

CSR_MHPMEVENT22 0x336

CSR_MHPMEVENT23 0x337

CSR_MHPMEVENT24 0x338

CSR_MHPMEVENT25 0x339

CSR_MHPMEVENT26 0x33a

CSR_MHPMEVENT27 0x33b

CSR_MHPMEVENT28 0x33c

CSR_MHPMEVENT29 0x33d

CSR_MHPMEVENT30 0x33e

CSR_MHPMEVENT31 0x33f

CSR_MVENDORID 0xf11

CSR_MARCHID 0xf12

CSR_MIMPID 0xf13

CSR_MHARTID 0xf14

CSR_CYCLEH 0xc80

CSR_TIMEH 0xc81

CSR_INSTRETH 0xc82

CSR_HPMCOUNTER3H 0xc83

64 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_HPMCOUNTER4H 0xc84

CSR_HPMCOUNTER5H 0xc85

CSR_HPMCOUNTER6H 0xc86

CSR_HPMCOUNTER7H 0xc87

CSR_HPMCOUNTER8H 0xc88

CSR_HPMCOUNTER9H 0xc89

CSR_HPMCOUNTER10H 0xc8a

CSR_HPMCOUNTER11H 0xc8b

CSR_HPMCOUNTER12H 0xc8c

CSR_HPMCOUNTER13H 0xc8d

CSR_HPMCOUNTER14H 0xc8e

CSR_HPMCOUNTER15H 0xc8f

CSR_HPMCOUNTER16H 0xc90

CSR_HPMCOUNTER17H 0xc91

CSR_HPMCOUNTER18H 0xc92

CSR_HPMCOUNTER19H 0xc93

CSR_HPMCOUNTER20H 0xc94

CSR_HPMCOUNTER21H 0xc95

CSR_HPMCOUNTER22H 0xc96

CSR_HPMCOUNTER23H 0xc97

CSR_HPMCOUNTER24H 0xc98

5.2. HummingBird RISC-V Processor 65

HummingBird SDK, Release 0.1.4

CSR_HPMCOUNTER25H 0xc99

CSR_HPMCOUNTER26H 0xc9a

CSR_HPMCOUNTER27H 0xc9b

CSR_HPMCOUNTER28H 0xc9c

CSR_HPMCOUNTER29H 0xc9d

CSR_HPMCOUNTER30H 0xc9e

CSR_HPMCOUNTER31H 0xc9f

CSR_MCYCLEH 0xb80

CSR_MINSTRETH 0xb82

CSR_MHPMCOUNTER3H 0xb83

CSR_MHPMCOUNTER4H 0xb84

CSR_MHPMCOUNTER5H 0xb85

CSR_MHPMCOUNTER6H 0xb86

CSR_MHPMCOUNTER7H 0xb87

CSR_MHPMCOUNTER8H 0xb88

CSR_MHPMCOUNTER9H 0xb89

CSR_MHPMCOUNTER10H 0xb8a

CSR_MHPMCOUNTER11H 0xb8b

CSR_MHPMCOUNTER12H 0xb8c

CSR_MHPMCOUNTER13H 0xb8d

CSR_MHPMCOUNTER14H 0xb8e

66 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_MHPMCOUNTER15H 0xb8f

CSR_MHPMCOUNTER16H 0xb90

CSR_MHPMCOUNTER17H 0xb91

CSR_MHPMCOUNTER18H 0xb92

CSR_MHPMCOUNTER19H 0xb93

CSR_MHPMCOUNTER20H 0xb94

CSR_MHPMCOUNTER21H 0xb95

CSR_MHPMCOUNTER22H 0xb96

CSR_MHPMCOUNTER23H 0xb97

CSR_MHPMCOUNTER24H 0xb98

CSR_MHPMCOUNTER25H 0xb99

CSR_MHPMCOUNTER26H 0xb9a

CSR_MHPMCOUNTER27H 0xb9b

CSR_MHPMCOUNTER28H 0xb9c

CSR_MHPMCOUNTER29H 0xb9d

CSR_MHPMCOUNTER30H 0xb9e

CSR_MHPMCOUNTER31H 0xb9f

CSR_MTVT 0x307

CSR_MNXTI 0x345

CSR_MINTSTATUS 0x346

CSR_MSCRATCHCSW 0x348

5.2. HummingBird RISC-V Processor 67

HummingBird SDK, Release 0.1.4

CSR_MSCRATCHCSWL 0x349

CSR_MCLICBASE 0x350

CSR_MCOUNTINHIBIT 0x320

CSR_MNVEC 0x7C3

CSR_MSUBM 0x7C4

CSR_MDCAUSE 0x7C9

CSR_MCACHE_CTL 0x7CA

CSR_MMISC_CTL 0x7D0

CSR_MSAVESTATUS 0x7D6

CSR_MSAVEEPC1 0x7D7

CSR_MSAVECAUSE1 0x7D8

CSR_MSAVEEPC2 0x7D9

CSR_MSAVECAUSE2 0x7DA

CSR_MSAVEDCAUSE1 0x7DB

CSR_MSAVEDCAUSE2 0x7DC

CSR_PUSHMSUBM 0x7EB

CSR_MTVT2 0x7EC

CSR_JALMNXTI 0x7ED

CSR_PUSHMCAUSE 0x7EE

CSR_PUSHMEPC 0x7EF

CSR_SLEEPVALUE 0x811

68 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

CSR_TXEVT 0x812

CSR_WFE 0x810

Other Core Related Macros

group NMSIS_Core_CSR_Encoding
NMSIS Core CSR Encodings.

The following macros are used for CSR encodings

Defines

MSTATUS_UIE 0x00000001

MSTATUS_SIE 0x00000002

MSTATUS_HIE 0x00000004

MSTATUS_MIE 0x00000008

MSTATUS_UPIE 0x00000010

MSTATUS_SPIE 0x00000020

MSTATUS_HPIE 0x00000040

MSTATUS_MPIE 0x00000080

MSTATUS_SPP 0x00000100

MSTATUS_MPP 0x00001800

MSTATUS_FS 0x00006000

MSTATUS_XS 0x00018000

MSTATUS_MPRV 0x00020000

MSTATUS_PUM 0x00040000

5.2. HummingBird RISC-V Processor 69

HummingBird SDK, Release 0.1.4

MSTATUS_MXR 0x00080000

MSTATUS_VM 0x1F000000

MSTATUS32_SD 0x80000000

MSTATUS64_SD 0x8000000000000000

MSTATUS_FS_INITIAL 0x00002000

MSTATUS_FS_CLEAN 0x00004000

MSTATUS_FS_DIRTY 0x00006000

SSTATUS_UIE 0x00000001

SSTATUS_SIE 0x00000002

SSTATUS_UPIE 0x00000010

SSTATUS_SPIE 0x00000020

SSTATUS_SPP 0x00000100

SSTATUS_FS 0x00006000

SSTATUS_XS 0x00018000

SSTATUS_PUM 0x00040000

SSTATUS32_SD 0x80000000

SSTATUS64_SD 0x8000000000000000

CSR_MCACHE_CTL_IE 0x00000001

CSR_MCACHE_CTL_DE 0x00010000

DCSR_XDEBUGVER (3U<<30)

DCSR_NDRESET (1<<29)

70 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

DCSR_FULLRESET (1<<28)

DCSR_EBREAKM (1<<15)

DCSR_EBREAKH (1<<14)

DCSR_EBREAKS (1<<13)

DCSR_EBREAKU (1<<12)

DCSR_STOPCYCLE (1<<10)

DCSR_STOPTIME (1<<9)

DCSR_CAUSE (7<<6)

DCSR_DEBUGINT (1<<5)

DCSR_HALT (1<<3)

DCSR_STEP (1<<2)

DCSR_PRV (3<<0)

DCSR_CAUSE_NONE 0

DCSR_CAUSE_SWBP 1

DCSR_CAUSE_HWBP 2

DCSR_CAUSE_DEBUGINT 3

DCSR_CAUSE_STEP 4

DCSR_CAUSE_HALT 5

MCONTROL_TYPE(xlen) (0xfULL<<((xlen)-4))

MCONTROL_DMODE(xlen) (1ULL<<((xlen)-5))

MCONTROL_MASKMAX(xlen) (0x3fULL<<((xlen)-11))

MCONTROL_SELECT (1<<19)

5.2. HummingBird RISC-V Processor 71

HummingBird SDK, Release 0.1.4

MCONTROL_TIMING (1<<18)

MCONTROL_ACTION (0x3f<<12)

MCONTROL_CHAIN (1<<11)

MCONTROL_MATCH (0xf<<7)

MCONTROL_M (1<<6)

MCONTROL_H (1<<5)

MCONTROL_S (1<<4)

MCONTROL_U (1<<3)

MCONTROL_EXECUTE (1<<2)

MCONTROL_STORE (1<<1)

MCONTROL_LOAD (1<<0)

MCONTROL_TYPE_NONE 0

MCONTROL_TYPE_MATCH 2

MCONTROL_ACTION_DEBUG_EXCEPTION 0

MCONTROL_ACTION_DEBUG_MODE 1

MCONTROL_ACTION_TRACE_START 2

MCONTROL_ACTION_TRACE_STOP 3

MCONTROL_ACTION_TRACE_EMIT 4

MCONTROL_MATCH_EQUAL 0

MCONTROL_MATCH_NAPOT 1

MCONTROL_MATCH_GE 2

72 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

MCONTROL_MATCH_LT 3

MCONTROL_MATCH_MASK_LOW 4

MCONTROL_MATCH_MASK_HIGH 5

MCAUSE_INTERRUPT (1ULL<<((__riscv_xlen)-1))

MIP_SSIP (1 << IRQ_S_SOFT (page 74))

MIP_HSIP (1 << IRQ_H_SOFT (page 74))

MIP_MSIP (1 << IRQ_M_SOFT (page 75))

MIP_STIP (1 << IRQ_S_TIMER (page 75))

MIP_HTIP (1 << IRQ_H_TIMER (page 75))

MIP_MTIP (1 << IRQ_M_TIMER (page 75))

MIP_SEIP (1 << IRQ_S_EXT (page 75))

MIP_HEIP (1 << IRQ_H_EXT (page 75))

MIP_MEIP (1 << IRQ_M_EXT (page 75))

MIE_SSIE MIP_SSIP (page 73)

MIE_HSIE MIP_HSIP (page 73)

MIE_MSIE MIP_MSIP (page 73)

MIE_STIE MIP_STIP (page 73)

MIE_HTIE MIP_HTIP (page 73)

MIE_MTIE MIP_MTIP (page 73)

MIE_SEIE MIP_SEIP (page 73)

MIE_HEIE MIP_HEIP (page 73)

5.2. HummingBird RISC-V Processor 73

HummingBird SDK, Release 0.1.4

MIE_MEIE MIP_MEIP (page 73)

WFE_WFE 0x1

MCOUNTINHIBIT_IR (1<<2)

MCOUNTINHIBIT_CY (1<<0)

MMISC_CTL_NMI_CAUSE_FFF (1<<9)

MMISC_CTL_MISALIGN (1<<6)

MMISC_CTL_BPU (1<<3)

SIP_SSIP MIP_SSIP (page 73)

SIP_STIP MIP_STIP (page 73)

PRV_U 0

PRV_S 1

PRV_H 2

PRV_M 3

VM_MBARE 0

VM_MBB 1

VM_MBBID 2

VM_SV32 8

VM_SV39 9

VM_SV48 10

IRQ_S_SOFT 1

IRQ_H_SOFT 2

74 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

IRQ_M_SOFT 3

IRQ_S_TIMER 5

IRQ_H_TIMER 6

IRQ_M_TIMER 7

IRQ_S_EXT 9

IRQ_H_EXT 10

IRQ_M_EXT 11

IRQ_COP 12

IRQ_HOST 13

DEFAULT_RSTVEC 0x00001000

DEFAULT_NMIVEC 0x00001004

DEFAULT_MTVEC 0x00001010

CONFIG_STRING_ADDR 0x0000100C

EXT_IO_BASE 0x40000000

DRAM_BASE 0x80000000

FRM_RNDMODE_RNE 0x0
FPU Round to Nearest, ties to Even.

FRM_RNDMODE_RTZ 0x1
FPU Round Towards Zero.

FRM_RNDMODE_RDN 0x2
FPU Round Down (towards -inf)

FRM_RNDMODE_RUP 0x3
FPU Round Up (towards +inf)

5.2. HummingBird RISC-V Processor 75

HummingBird SDK, Release 0.1.4

FRM_RNDMODE_RMM 0x4
FPU Round to nearest, ties to Max Magnitude.

FRM_RNDMODE_DYN 0x7
In instruction’s rm, selects dynamic rounding mode.

In Rounding Mode register, Invalid

FFLAGS_AE_NX (1<<0)
FPU Inexact.

FFLAGS_AE_UF (1<<1)
FPU Underflow.

FFLAGS_AE_OF (1<<2)
FPU Overflow.

FFLAGS_AE_DZ (1<<3)
FPU Divide by Zero.

FFLAGS_AE_NV (1<<4)
FPU Invalid Operation.

FREG(idx) f##idx
Floating Point Register f0-f31, eg.

f0 -> FREG(0) (page 76)

PMP_R 0x01

PMP_W 0x02

PMP_X 0x04

PMP_A 0x18

PMP_A_TOR 0x08

PMP_A_NA4 0x10

PMP_A_NAPOT 0x18

PMP_L 0x80

PMP_SHIFT 2

76 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

PMP_COUNT 16

PTE_V 0x001

PTE_R 0x002

PTE_W 0x004

PTE_X 0x008

PTE_U 0x010

PTE_G 0x020

PTE_A 0x040

PTE_D 0x080

PTE_SOFT 0x300

PTE_PPN_SHIFT 10

PTE_TABLE(PTE) (((PTE) & (PTE_V (page 77) | PTE_R (page 77) | PTE_W (page 77) | PTE_X (page 77)))
== PTE_V (page 77))

CAUSE_MISALIGNED_FETCH 0x0
End of Doxygen Group NMSIS_Core_CSR_Registers.

CAUSE_FAULT_FETCH 0x1

CAUSE_ILLEGAL_INSTRUCTION 0x2

CAUSE_BREAKPOINT 0x3

CAUSE_MISALIGNED_LOAD 0x4

CAUSE_FAULT_LOAD 0x5

CAUSE_MISALIGNED_STORE 0x6

CAUSE_FAULT_STORE 0x7

CAUSE_USER_ECALL 0x8

5.2. HummingBird RISC-V Processor 77

HummingBird SDK, Release 0.1.4

CAUSE_SUPERVISOR_ECALL 0x9

CAUSE_HYPERVISOR_ECALL 0xa

CAUSE_MACHINE_ECALL 0xb

DCAUSE_FAULT_FETCH_PMP 0x1

DCAUSE_FAULT_FETCH_INST 0x2

DCAUSE_FAULT_LOAD_PMP 0x1

DCAUSE_FAULT_LOAD_INST 0x2

DCAUSE_FAULT_LOAD_NICE 0x3

DCAUSE_FAULT_STORE_PMP 0x1

DCAUSE_FAULT_STORE_INST 0x2

Register Define and Type Definitions

group NMSIS_Core_Registers
Type definitions and defines for core registers.

Defines

__RISCV_XLEN 32
Refer to the width of an integer register in bits(either 32 or 64)

Typedefs

typedef uint32_t rv_csr_t
Type of Control and Status Register(CSR), depends on the XLEN defined in RISC-V.

78 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Core

group NMSIS_Core_Base_Registers
Type definitions and defines for base core registers.

union CSR_MISA_Type
#include <core_feature_base.h> Union type to access MISA register.

Public Members

rv_csr_t (page 78) a
bit: 0 Atomic extension

rv_csr_t (page 78) b
bit: 1 Tentatively reserved for Bit-Manipulation extension

rv_csr_t (page 78) c
bit: 2 Compressed extension

rv_csr_t (page 78) d
bit: 3 Double-precision floating-point extension

Type used for csr data access.

rv_csr_t (page 78) e
bit: 4 RV32E base ISA

rv_csr_t (page 78) f
bit: 5 Single-precision floating-point extension

rv_csr_t (page 78) g
bit: 6 Additional standard extensions present

rv_csr_t (page 78) h
bit: 7 Hypervisor extension

rv_csr_t (page 78) i
bit: 8 RV32I/64I/128I base ISA

rv_csr_t (page 78) j
bit: 9 Tentatively reserved for Dynamically Translated Languages extension

rv_csr_t (page 78) _reserved1
bit: 10 Reserved

5.2. HummingBird RISC-V Processor 79

HummingBird SDK, Release 0.1.4

rv_csr_t (page 78) l
bit: 11 Tentatively reserved for Decimal Floating-Point extension

rv_csr_t (page 78) m
bit: 12 Integer Multiply/Divide extension

rv_csr_t (page 78) n
bit: 13 User-level interrupts supported

rv_csr_t (page 78) _reserved2
bit: 14 Reserved

rv_csr_t (page 78) p
bit: 15 Tentatively reserved for Packed-SIMD extension

rv_csr_t (page 78) q
bit: 16 Quad-precision floating-point extension

rv_csr_t (page 78) _resreved3
bit: 17 Reserved

rv_csr_t (page 78) s
bit: 18 Supervisor mode implemented

rv_csr_t (page 78) t
bit: 19 Tentatively reserved for Transactional Memory extension

rv_csr_t (page 78) u
bit: 20 User mode implemented

rv_csr_t (page 78) v
bit: 21 Tentatively reserved for Vector extension

rv_csr_t (page 78) _reserved4
bit: 22 Reserved

rv_csr_t (page 78) x
bit: 23 Non-standard extensions present

rv_csr_t (page 78) _reserved5
bit: 24..29 Reserved

rv_csr_t (page 78) mxl
bit: 30..31 Machine XLEN

80 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

struct CSR_MISA_Type (page 79)::[anonymous] b
Structure used for bit access.

union CSR_MSTATUS_Type
#include <core_feature_base.h> Union type to access MSTATUS configure register.

Public Members

rv_csr_t (page 78) _reserved0
bit: 0 Reserved

rv_csr_t (page 78) sie
bit: 1 supervisor interrupt enable flag

rv_csr_t (page 78) _reserved1
bit: 2 Reserved

rv_csr_t (page 78) mie
bit: 3 Machine mode interrupt enable flag

rv_csr_t (page 78) _reserved2
bit: 4 Reserved

rv_csr_t (page 78) spie
bit: 3 Supervisor Privilede mode interrupt enable flag

rv_csr_t (page 78) _reserved3
bit: Reserved

rv_csr_t (page 78) mpie
bit: mirror of MIE flag

rv_csr_t (page 78) _reserved4
bit: Reserved

rv_csr_t (page 78) mpp
bit: mirror of Privilege Mode

rv_csr_t (page 78) fs
bit: FS status flag

rv_csr_t (page 78) xs
bit: XS status flag

5.2. HummingBird RISC-V Processor 81

HummingBird SDK, Release 0.1.4

rv_csr_t (page 78) mprv
bit: Machine mode PMP

rv_csr_t (page 78) sum
bit: Supervisor Mode load and store protection

rv_csr_t (page 78) _reserved6
bit: 19..30 Reserved

rv_csr_t (page 78) sd
bit: Dirty status for XS or FS

struct CSR_MSTATUS_Type (page 81)::[anonymous] b
Structure used for bit access.

rv_csr_t (page 78) d
Type used for csr data access.

union CSR_MTVEC_Type
#include <core_feature_base.h> Union type to access MTVEC configure register.

Public Members

rv_csr_t (page 78) mode
bit: 0..2 interrupt mode control

rv_csr_t (page 78) addr
bit: 3..31 mtvec address

struct CSR_MTVEC_Type (page 82)::[anonymous] b
Structure used for bit access.

rv_csr_t (page 78) d
Type used for csr data access.

union CSR_MCAUSE_Type
#include <core_feature_base.h> Union type to access MCAUSE configure register.

82 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Public Members

rv_csr_t (page 78) exccode
bit: 11..0 exception or interrupt code

rv_csr_t (page 78) _reserved0
bit: 15..12 Reserved

rv_csr_t (page 78) mpil
bit: 23..16 Previous interrupt level

rv_csr_t (page 78) _reserved1
bit: 26..24 Reserved

rv_csr_t (page 78) mpie
bit: 27 Interrupt enable flag before enter interrupt

rv_csr_t (page 78) mpp
bit: 29..28 Privilede mode flag before enter interrupt

rv_csr_t (page 78) minhv
bit: 30 Machine interrupt vector table

rv_csr_t (page 78) interrupt
bit: 31 trap type.

0 means exception and 1 means interrupt

struct CSR_MCAUSE_Type (page 82)::[anonymous] b
Structure used for bit access.

rv_csr_t (page 78) d
Type used for csr data access.

union CSR_MCOUNTINHIBIT_Type
#include <core_feature_base.h> Union type to access MCOUNTINHIBIT configure register.

Public Members

rv_csr_t (page 78) cy
bit: 0 1 means disable mcycle counter

rv_csr_t (page 78) _reserved0
bit: 1 Reserved

5.2. HummingBird RISC-V Processor 83

HummingBird SDK, Release 0.1.4

rv_csr_t (page 78) ir
bit: 2 1 means disable minstret counter

rv_csr_t (page 78) _reserved1
bit: 3..31 Reserved

struct CSR_MCOUNTINHIBIT_Type (page 83)::[anonymous] b
Structure used for bit access.

rv_csr_t (page 78) d
Type used for csr data access.

PLIC

group NMSIS_Core_PLIC_Registers
Type definitions and defines for plic registers.

Defines

PLIC_PRIORITY_OFFSET _AC(0x0000,UL)
PLIC Priority register offset.

PLIC_PRIORITY_SHIFT_PER_SOURCE 2
PLIC Priority register offset shift per source.

PLIC_PENDING_OFFSET _AC(0x1000,UL)
PLIC Pending register offset.

PLIC_PENDING_SHIFT_PER_SOURCE 0
PLIC Pending register offset shift per source.

PLIC_ENABLE_OFFSET _AC(0x2000,UL)
PLIC Enable register offset.

PLIC_ENABLE_SHIFT_PER_TARGET 7
PLIC Enable register offset shift per target.

PLIC_THRESHOLD_OFFSET _AC(0x200000,UL)
PLIC Threshold register offset.

PLIC_CLAIM_OFFSET _AC(0x200004,UL)
PLIC Claim register offset.

84 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

PLIC_THRESHOLD_SHIFT_PER_TARGET 12
PLIC Threshold register offset shift per target.

PLIC_CLAIM_SHIFT_PER_TARGET 12
PLIC Claim register offset shift per target.

PLIC_BASE __PLIC_BASEADDR
PLIC Base Address.

SysTimer

group NMSIS_Core_SysTimer_Registers
Type definitions and defines for system timer registers.

Defines

SysTimer_MSIP_MSIP_Pos 0U
SysTick Timer MSIP: MSIP bit Position.

SysTimer_MSIP_MSIP_Msk (1UL << SysTimer_MSIP_MSIP_Pos (page 85))
SysTick Timer MSIP: MSIP Mask.

SysTimer_MTIMER_Msk (0xFFFFFFFFFFFFFFFFULL)
SysTick Timer MTIMER value Mask.

SysTimer_MTIMERCMP_Msk (0xFFFFFFFFFFFFFFFFULL)
SysTick Timer MTIMERCMP value Mask.

SysTimer_MSIP_Msk (0xFFFFFFFFUL)
SysTick Timer MSIP value Mask.

SysTimer_BASE __SYSTIMER_BASEADDR
SysTick Base Address.

SysTimer ((SysTimer_Type (page 85) *) SysTimer_BASE (page 85))
SysTick configuration struct.

struct SysTimer_Type
#include <core_feature_timer.h> Structure type to access the System Timer (SysTimer).

Structure definition to access the system timer(SysTimer).

Remark

5.2. HummingBird RISC-V Processor 85

HummingBird SDK, Release 0.1.4

CPU Intrinsic Functions

__STATIC_FORCEINLINE void __NOP (void)

__STATIC_FORCEINLINE void __WFI (void)

__STATIC_FORCEINLINE void __EBREAK (void)

__STATIC_FORCEINLINE void __ECALL (void)

__STATIC_FORCEINLINE void __enable_mcycle_counter (void)

__STATIC_FORCEINLINE void __disable_mcycle_counter (void)

__STATIC_FORCEINLINE void __enable_minstret_counter (void)

__STATIC_FORCEINLINE void __disable_minstret_counter (void)

__STATIC_FORCEINLINE void __enable_all_counter (void)

__STATIC_FORCEINLINE void __disable_all_counter (void)

__STATIC_FORCEINLINE void __FENCE_I (void)

__STATIC_FORCEINLINE uint8_t __LB (volatile void *addr)

__STATIC_FORCEINLINE uint16_t __LH (volatile void *addr)

__STATIC_FORCEINLINE uint32_t __LW (volatile void *addr)

__STATIC_FORCEINLINE void __SB (volatile void *addr, uint8_t val)

__STATIC_FORCEINLINE void __SH (volatile void *addr, uint16_t val)

__STATIC_FORCEINLINE void __SW (volatile void *addr, uint32_t val)

__STATIC_FORCEINLINE uint32_t __CAS_W (volatile uint32_t *addr, uint32_t oldval,
uint32_t newval)

__STATIC_FORCEINLINE uint32_t __AMOSWAP_W (volatile uint32_t *addr, uint32_t newval)

__STATIC_FORCEINLINE int32_t __AMOADD_W (volatile int32_t *addr, int32_t value)

86 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE int32_t __AMOAND_W (volatile int32_t *addr, int32_t value)

__STATIC_FORCEINLINE int32_t __AMOOR_W (volatile int32_t *addr, int32_t value)

__STATIC_FORCEINLINE int32_t __AMOXOR_W (volatile int32_t *addr, int32_t value)

__STATIC_FORCEINLINE uint32_t __AMOMAXU_W (volatile uint32_t *addr, uint32_t value)

__STATIC_FORCEINLINE int32_t __AMOMAX_W (volatile int32_t *addr, int32_t value)

__STATIC_FORCEINLINE uint32_t __AMOMINU_W (volatile uint32_t *addr, uint32_t value)

__STATIC_FORCEINLINE int32_t __AMOMIN_W (volatile int32_t *addr, int32_t value)

__FENCE(p, s) __ASM (page 51) volatile ("fence " #p "," #s : : : "memory")

__RWMB() __FENCE(iorw,iorw)

__RMB() __FENCE(ir,ir)

__WMB() __FENCE(ow,ow)

__SMP_RWMB() __FENCE(rw,rw)

__SMP_RMB() __FENCE(r,r)

__SMP_WMB() __FENCE(w,w)

__CPU_RELAX() __ASM (page 51) volatile ("" : : : "memory")

group NMSIS_Core_CPU_Intrinsic
Functions that generate RISC-V CPU instructions.

The following functions generate specified RISC-V instructions that cannot be directly accessed by compiler.

Defines

__FENCE(p, s) __ASM (page 51) volatile ("fence " #p "," #s : : : "memory")
Execute fence instruction, p -> pred, s -> succ.

the FENCE instruction ensures that all memory accesses from instructions preceding the fence in program
order (the predecessor set) appear earlier in the global memory order than memory accesses from
instructions appearing after the fence in program order (the successor set). For details, please refer to
The RISC-V Instruction Set Manual

Parameters

• p – predecessor set, such as iorw, rw, r, w

• s – successor set, such as iorw, rw, r, w

__RWMB() __FENCE(iorw,iorw)
Read & Write Memory barrier.

5.2. HummingBird RISC-V Processor 87

HummingBird SDK, Release 0.1.4

__RMB() __FENCE(ir,ir)
Read Memory barrier.

__WMB() __FENCE(ow,ow)
Write Memory barrier.

__SMP_RWMB() __FENCE(rw,rw)
SMP Read & Write Memory barrier.

__SMP_RMB() __FENCE(r,r)
SMP Read Memory barrier.

__SMP_WMB() __FENCE(w,w)
SMP Write Memory barrier.

__CPU_RELAX() __ASM (page 51) volatile ("" : : : "memory")
CPU relax for busy loop.

Functions

__STATIC_FORCEINLINE void __NOP (void)

NOP Instruction.

No Operation does nothing. This instruction can be used for code alignment purposes.

__STATIC_FORCEINLINE void __WFI (void)

Wait For Interrupt.

The Wait for Interrupt instruction (WFI) provides a hint to the implementation that the current hart can be
stalled until an interrupt might need servicing. Execution of the WFI instruction can also be used to inform
the hardware platform that suitable interrupts should preferentially be routed to this hart.

__STATIC_FORCEINLINE void __EBREAK (void)

Breakpoint Instruction.

Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the
instruction at a particular address is reached.

__STATIC_FORCEINLINE void __ECALL (void)

Environment Call Instruction.

The ECALL instruction is used to make a service request to the execution environment.

__STATIC_FORCEINLINE void __enable_mcycle_counter (void)

Enable MCYCLE counter.

Clear the CY bit of MCOUNTINHIBIT to 0 to enable MCYCLE Counter

__STATIC_FORCEINLINE void __disable_mcycle_counter (void)

Disable MCYCLE counter.

Set the CY bit of MCOUNTINHIBIT to 1 to disable MCYCLE Counter

88 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE void __enable_minstret_counter (void)

Enable MINSTRET counter.

Clear the IR bit of MCOUNTINHIBIT to 0 to enable MINSTRET Counter

__STATIC_FORCEINLINE void __disable_minstret_counter (void)

Disable MINSTRET counter.

Set the IR bit of MCOUNTINHIBIT to 1 to disable MINSTRET Counter

__STATIC_FORCEINLINE void __enable_all_counter (void)

Enable MCYCLE & MINSTRET counter.

Clear the IR and CY bit of MCOUNTINHIBIT to 1 to enable MINSTRET & MCYCLE Counter

__STATIC_FORCEINLINE void __disable_all_counter (void)

Disable MCYCLE & MINSTRET counter.

Set the IR and CY bit of MCOUNTINHIBIT to 1 to disable MINSTRET & MCYCLE Counter

__STATIC_FORCEINLINE void __FENCE_I (void)

Fence.i Instruction.

The FENCE.I instruction is used to synchronize the instruction and data streams.

__STATIC_FORCEINLINE uint8_t __LB (volatile void *addr)

Load 8bit value from address (8 bit)

Load 8 bit value.

Parameters addr – [in] Address pointer to data

Returns value of type uint8_t at (*addr)

__STATIC_FORCEINLINE uint16_t __LH (volatile void *addr)

Load 16bit value from address (16 bit)

Load 16 bit value.

Parameters addr – [in] Address pointer to data

Returns value of type uint16_t at (*addr)

__STATIC_FORCEINLINE uint32_t __LW (volatile void *addr)

Load 32bit value from address (32 bit)

Load 32 bit value.

Parameters addr – [in] Address pointer to data

Returns value of type uint32_t at (*addr)

__STATIC_FORCEINLINE void __SB (volatile void *addr, uint8_t val)

Write 8bit value to address (8 bit)

Write 8 bit value.

5.2. HummingBird RISC-V Processor 89

HummingBird SDK, Release 0.1.4

Parameters

• addr – [in] Address pointer to data

• val – [in] Value to set

__STATIC_FORCEINLINE void __SH (volatile void *addr, uint16_t val)

Write 16bit value to address (16 bit)

Write 16 bit value.

Parameters

• addr – [in] Address pointer to data

• val – [in] Value to set

__STATIC_FORCEINLINE void __SW (volatile void *addr, uint32_t val)

Write 32bit value to address (32 bit)

Write 32 bit value.

Parameters

• addr – [in] Address pointer to data

• val – [in] Value to set

__STATIC_FORCEINLINE uint32_t __CAS_W (volatile uint32_t *addr, uint32_t oldval,
uint32_t newval)

Compare and Swap 32bit value using LR and SC.

Compare old value with memory, if identical, store new value in memory. Return the initial value in
memory. Success is indicated by comparing return value with OLD. memory address, return 0 if successful,
otherwise return !0

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• oldval – [in] Old value of the data in address

• newval – [in] New value to be stored into the address

Returns return the initial value in memory

__STATIC_FORCEINLINE uint32_t __AMOSWAP_W (volatile uint32_t *addr, uint32_t newval)

Atomic Swap 32bit value into memory.

Atomically swap new 32bit value into memory using amoswap.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• newval – [in] New value to be stored into the address

Returns return the original value in memory

__STATIC_FORCEINLINE int32_t __AMOADD_W (volatile int32_t *addr, int32_t value)

Atomic Add with 32bit value.

Atomically ADD 32bit value with value in memory using amoadd.d.

90 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be ADDed

Returns return memory value + add value

__STATIC_FORCEINLINE int32_t __AMOAND_W (volatile int32_t *addr, int32_t value)

Atomic And with 32bit value.

Atomically AND 32bit value with value in memory using amoand.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be ANDed

Returns return memory value & and value

__STATIC_FORCEINLINE int32_t __AMOOR_W (volatile int32_t *addr, int32_t value)

Atomic OR with 32bit value.

Atomically OR 32bit value with value in memory using amoor.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be ORed

Returns return memory value | and value

__STATIC_FORCEINLINE int32_t __AMOXOR_W (volatile int32_t *addr, int32_t value)

Atomic XOR with 32bit value.

Atomically XOR 32bit value with value in memory using amoxor.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be XORed

Returns return memory value ^ and value

__STATIC_FORCEINLINE uint32_t __AMOMAXU_W (volatile uint32_t *addr, uint32_t value)

Atomic unsigned MAX with 32bit value.

Atomically unsigned max compare 32bit value with value in memory using amomaxu.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be compared

Returns return the bigger value

5.2. HummingBird RISC-V Processor 91

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE int32_t __AMOMAX_W (volatile int32_t *addr, int32_t value)

Atomic signed MAX with 32bit value.

Atomically signed max compare 32bit value with value in memory using amomax.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be compared

Returns the bigger value

__STATIC_FORCEINLINE uint32_t __AMOMINU_W (volatile uint32_t *addr, uint32_t value)

Atomic unsigned MIN with 32bit value.

Atomically unsigned min compare 32bit value with value in memory using amominu.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be compared

Returns the smaller value

__STATIC_FORCEINLINE int32_t __AMOMIN_W (volatile int32_t *addr, int32_t value)

Atomic signed MIN with 32bit value.

Atomically signed min compare 32bit value with value in memory using amomin.d.

Parameters

• addr – [in] Address pointer to data, address need to be 4byte aligned

• value – [in] value to be compared

Returns the smaller value

Peripheral Access

__I volatile const

__O volatile

__IO volatile

__IM volatile const

__OM volatile

__IOM volatile

_VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)

92 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

_FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)

group NMSIS_Core_PeriphAccess
Naming conventions and optional features for accessing peripherals.

The section below describes the naming conventions, requirements, and optional features for accessing device
specific peripherals. Most of the rules also apply to the core peripherals.

The Device Header File <device.h> contains typically these definition and also includes the core specific header
files.

Defines

__I volatile const
Defines ‘read only’ permissions.

__O volatile
Defines ‘write only’ permissions.

__IO volatile
Defines ‘read / write’ permissions.

__IM volatile const
Defines ‘read only’ structure member permissions.

__OM volatile
Defines ‘write only’ structure member permissions.

__IOM volatile
Defines ‘read/write’ structure member permissions.

_VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
Mask and shift a bit field value for use in a register bit range.

The macro _VAL2FLD uses the #define’s _Pos and _Msk of the related bit field to shift bit-field values for
assigning to a register.

Example:

PLIC->CFG = _VAL2FLD(CLIC_CLICCFG_NLBIT, 3);

Parameters

• field – [in] Name of the register bit field.

• value – [in] Value of the bit field. This parameter is interpreted as an uint32_t type.

Returns Masked and shifted value.

5.2. HummingBird RISC-V Processor 93

HummingBird SDK, Release 0.1.4

_FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
Mask and shift a register value to extract a bit filed value.

The macro _FLD2VAL uses the #define’s _Pos and _Msk of the related bit field to extract the value of a bit
field from a register.

Example:

nlbits = _FLD2VAL(CLIC_CLICCFG_NLBIT, PLIC->CFG);

Parameters

• field – [in] Name of the register bit field.

• value – [in] Value of register. This parameter is interpreted as an uint32_t type.

Returns Masked and shifted bit field value.

Systick Timer(SysTimer)

SysTimer API

__STATIC_FORCEINLINE void SysTimer_SetLoadValue (uint64_t value)

__STATIC_FORCEINLINE uint64_t SysTimer_GetLoadValue (void)

__STATIC_FORCEINLINE void SysTimer_SetCompareValue (uint64_t value)

__STATIC_FORCEINLINE uint64_t SysTimer_GetCompareValue (void)

__STATIC_FORCEINLINE void SysTimer_SetSWIRQ (void)

__STATIC_FORCEINLINE void SysTimer_ClearSWIRQ (void)

__STATIC_FORCEINLINE uint32_t SysTimer_GetMsipValue (void)

__STATIC_FORCEINLINE void SysTimer_SetMsipValue (uint32_t msip)

__STATIC_INLINE uint32_t SysTick_Config (uint64_t ticks)

__STATIC_FORCEINLINE uint32_t SysTick_Reload (uint64_t ticks)

group NMSIS_Core_SysTimer
Functions that configure the Core System Timer.

94 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Functions

__STATIC_FORCEINLINE void SysTimer_SetLoadValue (uint64_t value)

Set system timer load value.

This function set the system timer load value in MTIMER register.

Remark

• Load value is 64bits wide.

• SysTimer_GetLoadValue

Parameters value – [in] value to set system timer MTIMER register.

__STATIC_FORCEINLINE uint64_t SysTimer_GetLoadValue (void)

Get system timer load value.

This function get the system timer current value in MTIMER register.

Remark

• Load value is 64bits wide.

• SysTimer_SetLoadValue

Returns current value(64bit) of system timer MTIMER register.

__STATIC_FORCEINLINE void SysTimer_SetCompareValue (uint64_t value)

Set system timer compare value.

This function set the system Timer compare value in MTIMERCMP register.

Remark

• Compare value is 64bits wide.

• If compare value is larger than current value timer interrupt generate.

• Modify the load value or compare value less to clear the interrupt.

• SysTimer_GetCompareValue

Parameters value – [in] compare value to set system timer MTIMERCMP register.

5.2. HummingBird RISC-V Processor 95

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE uint64_t SysTimer_GetCompareValue (void)

Get system timer compare value.

This function get the system timer compare value in MTIMERCMP register.

Remark

• Compare value is 64bits wide.

• SysTimer_SetCompareValue

Returns compare value of system timer MTIMERCMP register.

__STATIC_FORCEINLINE void SysTimer_SetSWIRQ (void)

Trigger or set software interrupt via system timer.

This function set the system timer MSIP bit in MSIP register.

Remark

• Set system timer MSIP bit and generate a SW interrupt.

• SysTimer_ClearSWIRQ

• SysTimer_GetMsipValue

__STATIC_FORCEINLINE void SysTimer_ClearSWIRQ (void)

Clear system timer software interrupt pending request.

This function clear the system timer MSIP bit in MSIP register.

Remark

• Clear system timer MSIP bit in MSIP register to clear the software interrupt pending.

• SysTimer_SetSWIRQ

• SysTimer_GetMsipValue

__STATIC_FORCEINLINE uint32_t SysTimer_GetMsipValue (void)

Get system timer MSIP register value.

This function get the system timer MSIP register value.

Remark

• Bit0 is SW interrupt flag. Bit0 is 1 then SW interrupt set. Bit0 is 0 then SW interrupt clear.

96 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

• SysTimer_SetSWIRQ

• SysTimer_ClearSWIRQ

Returns Value of Timer MSIP register.

__STATIC_FORCEINLINE void SysTimer_SetMsipValue (uint32_t msip)

Set system timer MSIP register value.

This function set the system timer MSIP register value.

Parameters msip – [in] value to set MSIP register

__STATIC_INLINE uint32_t SysTick_Config (uint64_t ticks)

System Tick Configuration.

Initializes the System Timer and its non-vector interrupt, and starts the System Tick Timer.

In our default implementation, the timer counter will be set to zero, and it will start a timer compare non-
vector interrupt when it matchs the ticks user set, during the timer interrupt user should reload the system
tick using SysTick_Reload function or similar function written by user, so it can produce period timer
interrupt.

See also:

• SysTimer_SetCompareValue; SysTimer_SetLoadValue

Parameters ticks – [in] Number of ticks between two interrupts.

Returns 0 Function succeeded.

Returns 1 Function failed.

__STATIC_FORCEINLINE uint32_t SysTick_Reload (uint64_t ticks)

System Tick Reload.

Reload the System Timer Tick when the MTIMECMP reached TIME value

See also:

• SysTimer_SetCompareValue

• SysTimer_SetLoadValue

Parameters ticks – [in] Number of ticks between two interrupts.

Returns 0 Function succeeded.

Returns 1 Function failed.

5.2. HummingBird RISC-V Processor 97

HummingBird SDK, Release 0.1.4

Interrupts and Exceptions

Interrupt and Exception API

enum IRQn
Values:

enumerator Reserved0_IRQn

enumerator Reserved1_IRQn

enumerator Reserved2_IRQn

enumerator SysTimerSW_IRQn

enumerator Reserved4_IRQn

enumerator Reserved5_IRQn

enumerator Reserved6_IRQn

enumerator SysTimer_IRQn

enumerator Reserved8_IRQn

enumerator Reserved9_IRQn

enumerator Reserved10_IRQn

enumerator Reserved11_IRQn

enumerator Reserved12_IRQn

enumerator Reserved13_IRQn

enumerator Reserved14_IRQn

enumerator Reserved15_IRQn

enumerator PLIC_INT0_IRQn

enumerator PLIC_INT1_IRQn

98 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

enumerator PLIC_INT_MAX

__STATIC_FORCEINLINE void PLIC_SetThreshold (uint32_t thresh)

__STATIC_FORCEINLINE uint32_t PLIC_GetThreshold (void)

__STATIC_FORCEINLINE void PLIC_EnableInterrupt (uint32_t source)

__STATIC_FORCEINLINE void PLIC_DisableInterrupt (uint32_t source)

__STATIC_FORCEINLINE uint32_t PLIC_GetInterruptEnable (uint32_t source)

__STATIC_FORCEINLINE void PLIC_SetPriority (uint32_t source, uint32_t priority)

__STATIC_FORCEINLINE uint32_t PLIC_GetPriority (uint32_t source, uint32_t priority)

__STATIC_FORCEINLINE uint32_t PLIC_ClaimInterrupt (void)

__STATIC_FORCEINLINE void PLIC_CompleteInterrupt (uint32_t source)

__STATIC_FORCEINLINE void PLIC_Init (uint32_t num_sources)

__STATIC_FORCEINLINE void __set_trap_entry (rv_csr_t addr)

__STATIC_FORCEINLINE rv_csr_t __get_trap_entry (void)

group NMSIS_Core_IntExc
Functions that manage interrupts and exceptions via the PLIC.

Enums

enum IRQn
Definition of IRQn numbers.

The core interrupt enumeration names for IRQn values are defined in the file <Device>.h.

• Interrupt ID(IRQn) from 0 to 18 are reserved for core internal interrupts.

• Interrupt ID(IRQn) start from 19 represent device-specific external interrupts.

• The first device-specific interrupt has the IRQn value 19.

The table below describes the core interrupt names and their availability in various Nuclei Cores.

Values:

5.2. HummingBird RISC-V Processor 99

HummingBird SDK, Release 0.1.4

enumerator Reserved0_IRQn
Internal reserved.

enumerator Reserved1_IRQn
Internal reserved.

enumerator Reserved2_IRQn
Internal reserved.

enumerator SysTimerSW_IRQn
System Timer SW interrupt.

enumerator Reserved4_IRQn
Internal reserved.

enumerator Reserved5_IRQn
Internal reserved.

enumerator Reserved6_IRQn
Internal reserved.

enumerator SysTimer_IRQn
System Timer Interrupt.

enumerator Reserved8_IRQn
Internal reserved.

enumerator Reserved9_IRQn
Internal reserved.

enumerator Reserved10_IRQn
Internal reserved.

enumerator Reserved11_IRQn
Internal reserved.

enumerator Reserved12_IRQn
Internal reserved.

enumerator Reserved13_IRQn
Internal reserved.

enumerator Reserved14_IRQn
Internal reserved.

100 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

enumerator Reserved15_IRQn
Internal reserved.

enumerator PLIC_INT0_IRQn
0 plic interrupt, means no interrupt

enumerator PLIC_INT1_IRQn
1st plic interrupt

enumerator PLIC_INT_MAX
Number of total plic interrupts.

Functions

__STATIC_FORCEINLINE void PLIC_SetThreshold (uint32_t thresh)

Set priority threshold value of plic.

This function set priority threshold value of plic for current hart.

Remark

See also:

• PLIC_GetThreshold

Parameters thresh – [in] threshold value

__STATIC_FORCEINLINE uint32_t PLIC_GetThreshold (void)

Get priority threshold value of plic.

This function get priority threshold value of plic.

Remark

See also:

• PLIC_SetThreshold

Returns priority threshold value for current hart

5.2. HummingBird RISC-V Processor 101

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE void PLIC_EnableInterrupt (uint32_t source)

Enable interrupt for selected source plic.

This function enable interrupt for selected source plic of current hart.

Remark

See also:

• PLIC_DisableInterrupt

Parameters source – [in] interrupt source

__STATIC_FORCEINLINE void PLIC_DisableInterrupt (uint32_t source)

Disable interrupt for selected source plic.

This function disable interrupt for selected source plic of current hart.

Remark

See also:

• PLIC_EnableInterrupt

Parameters source – [in] interrupt source

__STATIC_FORCEINLINE uint32_t PLIC_GetInterruptEnable (uint32_t source)

Get interrupt enable status for selected source plic.

This function get interrupt enable for selected source plic of current hart.

Remark

See also:

• PLIC_EnableInterrupt

• PLIC_DisableInterrupt

Parameters source – [in] interrupt source

Returns enable status for selected interrupt source for current hart

102 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

__STATIC_FORCEINLINE void PLIC_SetPriority (uint32_t source, uint32_t priority)

Set interrupt priority for selected source plic.

This function set interrupt priority for selected source plic of current hart.

Remark

See also:

• PLIC_GetPriority

Parameters

• source – [in] interrupt source

• priority – [in] interrupt priority

__STATIC_FORCEINLINE uint32_t PLIC_GetPriority (uint32_t source, uint32_t priority)

Get interrupt priority for selected source plic.

This function get interrupt priority for selected source plic of current hart.

Remark

See also:

• PLIC_SetPriority

Parameters

• source – [in] interrupt source

• priority – [in] interrupt priority

__STATIC_FORCEINLINE uint32_t PLIC_ClaimInterrupt (void)

Claim interrupt for plic of current hart.

This function claim interrupt for plic of current hart.

Remark

A successful claim will also atomically clear the corresponding pending bit on the interrupt source. The
PLIC can perform a claim at any time and the claim operation is not affected by the setting of the priority
threshold register.

See also:

5.2. HummingBird RISC-V Processor 103

HummingBird SDK, Release 0.1.4

• PLIC_CompleteInterrupt

Returns the ID of the highest priority pending interrupt or zero if there is no pending interrupt

__STATIC_FORCEINLINE void PLIC_CompleteInterrupt (uint32_t source)

Complete interrupt for plic of current hart.

This function complete interrupt for plic of current hart.

Remark

The PLIC signals it has completed executing an interrupt handler by writing the interrupt ID it received
from the claim to the claim/complete register. The PLIC does not check whether the completion ID is the
same as the last claim ID for that target. If the completion ID does not match an interrupt source that is
currently enabled for the target, the completion is silently ignored.

See also:

• PLIC_ClaimInterrupt

Returns the ID of the highest priority pending interrupt or zero if there is no pending interrupt

__STATIC_FORCEINLINE void PLIC_Init (uint32_t num_sources)

Perform init for plic of current hart.

This function perform initialization steps for plic of current hart.

Remark

• Disable all interrupts

• Set all priorities to zero

• Set priority threshold to zero

__STATIC_FORCEINLINE void __set_trap_entry (rv_csr_t addr)

Set Trap entry address.

This function set trap entry address to ‘CSR_MTVEC’.

Remark

• This function use to set trap entry address to ‘CSR_MTVEC’.

See also:

• __get_trap_entry

104 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Parameters addr – [in] trap entry address

__STATIC_FORCEINLINE rv_csr_t __get_trap_entry (void)

Get trap entry address.

This function get trap entry address from ‘CSR_MTVEC’.

Remark

• This function use to get trap entry address from ‘CSR_MTVEC’.

See also:

• __set_trap_entry

Returns trap entry address

FPU Functions

group NMSIS_Core_FPU_Functions
Functions that related to the RISC-V FPU (F and D extension).

Nuclei provided floating point unit by RISC-V F and D extension.

• F extension adds single-precision floating-point computational instructions compliant with the IEEE
754-2008 arithmetic standard, __RISCV_FLEN = 32. The F extension adds 32 floating-point registers,
f0-f31, each 32 bits wide, and a floating-point control and status register fcsr, which contains the operating
mode and exception status of the floating-point unit.

• D extension adds double-precision floating-point computational instructions compliant with the IEEE
754-2008 arithmetic standard. The D extension widens the 32 floating-point registers, f0-f31, to 64 bits,
__RISCV_FLEN = 64

Defines

__RISCV_FLEN 64

__get_FCSR() __RV_CSR_READ (page 53)(CSR_FCSR (page 57))
Get FCSR CSR Register.

__set_FCSR(val) __RV_CSR_WRITE (page 53)(CSR_FCSR (page 57), (val))
Set FCSR CSR Register with val.

__get_FRM() __RV_CSR_READ (page 53)(CSR_FRM (page 57))
Get FRM CSR Register.

__set_FRM(val) __RV_CSR_WRITE (page 53)(CSR_FRM (page 57), (val))
Set FRM CSR Register with val.

5.2. HummingBird RISC-V Processor 105

HummingBird SDK, Release 0.1.4

__get_FFLAGS() __RV_CSR_READ (page 53)(CSR_FFLAGS (page 57))
Get FFLAGS CSR Register.

__set_FFLAGS(val) __RV_CSR_WRITE (page 53)(CSR_FFLAGS (page 57), (val))
Set FFLAGS CSR Register with val.

__enable_FPU() __RV_CSR_SET (page 53)(CSR_MSTATUS (page 59), MSTATUS_FS (page 69))
Enable FPU Unit.

__disable_FPU() __RV_CSR_CLEAR (page 54)(CSR_MSTATUS (page 59), MSTATUS_FS (page 69))
Disable FPU Unit.

• We can save power by disable FPU Unit.

• When FPU Unit is disabled, any access to FPU related CSR registers and FPU instructions will cause
illegal Instuction Exception.

__RV_FLW(freg, addr, ofs)
Load a single-precision value from memory into float point register freg using flw instruction.

The FLW instruction loads a single-precision floating point value from memory address (addr + ofs) into
floating point register freg(f0-f31)

Remark

• FLW and FSW operations need to make sure the address is 4 bytes aligned, otherwise it will cause
exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)

• FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved

Parameters

• freg – [in] The floating point register, eg. FREG(0) (page 76), f0

• addr – [in] The memory base address, 4 byte aligned required

• ofs – [in] a 12-bit immediate signed byte offset value, should be an const value

__RV_FSW(freg, addr, ofs)
Store a single-precision value from float point freg into memory using fsw instruction.

The FSW instruction stores a single-precision value from floating point register to memory

Remark

• FLW and FSW operations need to make sure the address is 4 bytes aligned, otherwise it will cause
exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)

• FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved

Parameters

106 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

• freg – [in] The floating point register(f0-f31), eg. FREG(0) (page 76), f0

• addr – [in] The memory base address, 4 byte aligned required

• ofs – [in] a 12-bit immediate signed byte offset value, should be an const value

__RV_FLD(freg, addr, ofs)
Load a double-precision value from memory into float point register freg using fld instruction.

The FLD instruction loads a double-precision floating point value from memory address (addr + ofs) into
floating point register freg(f0-f31)

Remark

• FLD and FSD operations need to make sure the address is 8 bytes aligned, otherwise it will cause
exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)

• FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

Attention

• Function only available for double precision floating point unit, FLEN = 64

Parameters

• freg – [in] The floating point register, eg. FREG(0) (page 76), f0

• addr – [in] The memory base address, 8 byte aligned required

• ofs – [in] a 12-bit immediate signed byte offset value, should be an const value

__RV_FSD(freg, addr, ofs)
Store a double-precision value from float point freg into memory using fsd instruction.

The FSD instruction stores double-precision value from floating point register to memory

Remark

• FLD and FSD operations need to make sure the address is 8 bytes aligned, otherwise it will cause
exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)

• FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

Attention

• Function only available for double precision floating point unit, FLEN = 64

Parameters

• freg – [in] The floating point register(f0-f31), eg. FREG(0) (page 76), f0

• addr – [in] The memory base address, 8 byte aligned required

5.2. HummingBird RISC-V Processor 107

HummingBird SDK, Release 0.1.4

• ofs – [in] a 12-bit immediate signed byte offset value, should be an const value

__RV_FLOAD __RV_FLD (page 107)
Load a float point value from memory into float point register freg using flw/fld instruction.

• For Single-Precison Floating-Point Mode(__FPU_PRESENT == 1, __RISCV_FLEN == 32): It will
call __RV_FLW (page 106) to load a single-precision floating point value from memory to floating
point register

• For Double-Precison Floating-Point Mode(__FPU_PRESENT == 2, __RISCV_FLEN == 64): It will
call __RV_FLD (page 107) to load a double-precision floating point value from memory to floating
point register

Attention Function behaviour is different for __FPU_PRESENT = 1 or 2, please see the real function this
macro represent

__RV_FSTORE __RV_FSD (page 107)
Store a float value from float point freg into memory using fsw/fsd instruction.

• For Single-Precison Floating-Point Mode(__FPU_PRESENT == 1, __RISCV_FLEN == 32): It will
call __RV_FSW (page 106) to store floating point register into memory

• For Double-Precison Floating-Point Mode(__FPU_PRESENT == 2, __RISCV_FLEN == 64): It will
call __RV_FSD (page 107) to store floating point register into memory

Attention Function behaviour is different for __FPU_PRESENT = 1 or 2, please see the real function this
macro represent

SAVE_FPU_CONTEXT()

Save FPU context into variables for interrupt nesting.

This macro is used to declare variables which are used for saving FPU context, and it will store the nessary
fpu registers into these variables, it need to be used in a interrupt when in this interrupt fpu registers are
used.

Remark

• It need to be used together with RESTORE_FPU_CONTEXT (page 109)

• Don’t use variable names __fpu_context in your ISR code

• If you isr code will use fpu registers, and this interrupt is nested. Then you can do it like this:

void core_mtip_handler(void)
{

// !!!Interrupt is enabled here!!!
// !!!Higher priority interrupt could nest it!!!

// Necessary only when you need to use fpu registers
(continues on next page)

108 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

(continued from previous page)

// in this isr handler functions
SAVE_FPU_CONTEXT();

// put you own interrupt handling code here

// pair of SAVE_FPU_CONTEXT()
RESTORE_FPU_CONTEXT();

}

RESTORE_FPU_CONTEXT()

Restore necessary fpu registers from variables for interrupt nesting.

This macro is used restore necessary fpu registers from pre-defined variables in SAVE_FPU_CONTEXT
(page 108) macro.

Remark

• It need to be used together with SAVE_FPU_CONTEXT (page 108)

Typedefs

typedef uint64_t rv_fpu_t
Type of FPU register, depends on the FLEN defined in RISC-V.

System Device Configuration

group NMSIS_Core_SystemConfig
Functions for system and clock setup available in system_<device>.c.

HummingBird provides a template file system_Device.c that must be adapted by the silicon vendor to match
their actual device. As a minimum requirement, this file must provide:

• A device-specific system configuration function, SystemInit (page 110).

• A global variable that contains the system frequency, SystemCoreClock (page 111).

• Global c library _premain_init and _postmain_fini functions called right before and after calling main
function.

• Vendor customized interrupt, exception handling code, see Interrupt and Exception Handling (page 111)

The file configures the device and, typically, initializes the oscillator (PLL) that is part of the microcontroller
device. This file might export other functions or variables that provide a more flexible configuration of the
microcontroller system.

And this file also provided common interrupt, exception exception handling framework template, Silicon vendor
can customize these template code as they want.

5.2. HummingBird RISC-V Processor 109

HummingBird SDK, Release 0.1.4

Attention Be aware that a value stored to SystemCoreClock during low level initializaton (i.e. SystemInit()
(page 110)) might get overwritten by C libray startup code and/or .bss section initialization. Thus its
highly recommended to call SystemCoreClockUpdate (page 110) at the beginning of the user main() rou-
tine.

Note: Please pay special attention to the static variable SystemCoreClock. This variable might be used
throughout the whole system initialization and runtime to calculate frequency/time related values. Thus one
must assure that the variable always reflects the actual system clock speed.

Functions

void SystemCoreClockUpdate(void)
Function to update the variable SystemCoreClock (page 111).

Updates the variable SystemCoreClock (page 111) and must be called whenever the core clock is changed
during program execution. The function evaluates the clock register settings and calculates the current core
clock.

void SystemInit(void)
Function to Initialize the system.

Initializes the microcontroller system. Typically, this function configures the oscillator (PLL) that is part
of the microcontroller device. For systems with a variable clock speed, it updates the variable SystemCore-
Clock (page 111). SystemInit is called from the file startup.

void SystemBannerPrint(void)
Banner Print for HummingBird SDK.

int32_t Core_Register_IRQ(uint32_t irqn, void *handler)
Register a riscv core interrupt and register the handler.

This function set interrupt handler for core interrupt

Remark

• This function use to configure riscv core interrupt and register its interrupt handler and enable its
interrupt.

Parameters

• irqn – [in] interrupt number

• handler – [in] interrupt handler, if NULL, handler will not be installed

Returns -1 means invalid input parameter. 0 means successful.

int32_t PLIC_Register_IRQ(uint32_t source, uint8_t priority, void *handler)
Register a specific plic interrupt and register the handler.

This function set priority and handler for plic interrupt

Remark

110 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

• This function use to configure specific plic interrupt and register its interrupt handler and enable its
interrupt.

Parameters

• source – [in] interrupt source

• priority – [in] interrupt priority

• handler – [in] interrupt handler, if NULL, handler will not be installed

Returns -1 means invalid input parameter. 0 means successful.

Variables

uint32_t SystemCoreClock = SYSTEM_CLOCK
Variable to hold the system core clock value.

Holds the system core clock, which is the system clock frequency supplied to the SysTick timer and the
processor core clock. This variable can be used by debuggers to query the frequency of the debug timer or
to configure the trace clock speed.

Attention Compilers must be configured to avoid removing this variable in case the application program
is not using it. Debugging systems require the variable to be physically present in memory so that it
can be examined to configure the debugger.

Interrupt Exception NMI Handling

group NMSIS_Core_IntExcNMI_Handling
Functions for interrupt, exception handle available in system_<device>.c.

HBIRD provide a template for interrupt, exception handling. Silicon Vendor could adapat according to their
requirement. Silicon vendor could implement interface for different exception code and replace current imple-
mentation.

Defines

MAX_SYSTEM_EXCEPTION_NUM 11
Max exception handler number.

5.2. HummingBird RISC-V Processor 111

HummingBird SDK, Release 0.1.4

Typedefs

typedef void (*EXC_HANDLER)(unsigned long mcause, unsigned long sp)
Exception Handler Function Typedef.

Note: This typedef is only used internal in this system_<Device>.c file. It is used to do type conversion
for registered exception handler before calling it.

typedef void (*INT_HANDLER)(unsigned long mcause, unsigned long sp)

Functions

static uint32_t core_exception_handler(unsigned long mcause, unsigned long sp)
Common Exception handler entry.

This function provided a command entry for exception. Silicon Vendor could modify this template imple-
mentation according to requirement.

Remark

• RISCV provided common entry for all types of exception. This is proposed code template for exception
entry function, Silicon Vendor could modify the implementation.

• For the core_exception_handler template, we provided exception register function Excep-
tion_Register_EXC (page 113) which can help developer to register your exception handler for specific
exception number.

static void system_default_exception_handler(unsigned long mcause, unsigned long sp)
System Default Exception Handler.

This function provided a default exception handling code for all exception ids. By default, It will just print
some information for debug, Vendor can customize it according to its requirements.

static void system_default_interrupt_handler(unsigned long mcause, unsigned long sp)
System Default Interrupt Handler.

This function provided a default interrupt handling code for all interrupt ids.

static void Exception_Init(void)
Initialize all the default core exception handlers.

The core exception handler for each exception id will be initialized to system_default_exception_handler
(page 112).

Note: Called in _init function, used to initialize default exception handlers for all exception IDs

112 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

static void Interrupt_Init(void)
Initialize all the default interrupt handlers.

The interrupt handler for each exception id will be initialized to system_default_interrupt_handler
(page 112).

Note: Called in _init function, used to initialize default interrupt handlers for all interrupt IDs

void Exception_Register_EXC(uint32_t EXCn, unsigned long exc_handler)
Register an exception handler for exception code EXCn.

• For EXCn < MAX_SYSTEM_EXCEPTION_NUM (page 111), it will be registered into
SystemExceptionHandlers[EXCn-1].

Parameters

• EXCn – See EXCn_Type

• exc_handler – The exception handler for this exception code EXCn

void Interrupt_Register_CoreIRQ(uint32_t irqn, unsigned long int_handler)
Register an core interrupt handler for core interrupt number.

• For irqn <= 10, it will be registered into SystemCoreInterruptHandlers[irqn-1].

Parameters

• irqn – See IRQn

• int_handler – The core interrupt handler for this interrupt code irqn

void Interrupt_Register_ExtIRQ(uint32_t irqn, unsigned long int_handler)
Register an external interrupt handler for plic external interrupt number.

• For irqn <= __PLIC_INTNUM, it will be registered into SystemExtInterruptHandlers[irqn-1].

Parameters

• irqn – See IRQn

• int_handler – The external interrupt handler for this interrupt code irqn

unsigned long Interrupt_Get_CoreIRQ(uint32_t irqn)
Get an core interrupt handler for core interrupt number.

Parameters irqn – See IRQn

Returns The core interrupt handler for this interrupt code irqn

unsigned long Interrupt_Get_ExtIRQ(uint32_t irqn)
Get an external interrupt handler for external interrupt number.

Parameters irqn – See IRQn

5.2. HummingBird RISC-V Processor 113

HummingBird SDK, Release 0.1.4

Returns The external interrupt handler for this interrupt code irqn

unsigned long Exception_Get_EXC(uint32_t EXCn)
Get current exception handler for exception code EXCn.

• For EXCn < MAX_SYSTEM_EXCEPTION_NUM (page 111), it will return
SystemExceptionHandlers[EXCn-1].

Parameters EXCn – See EXCn_Type

Returns Current exception handler for exception code EXCn, if not found, return 0.

uint32_t core_trap_handler(unsigned long mcause, unsigned long sp)
Common trap entry.

This function provided a command entry for trap. Silicon Vendor could modify this template implementa-
tion according to requirement.

Remark

• RISCV provided common entry for all types of exception including exception and interrupt. This is
proposed code template for exception entry function, Silicon Vendor could modify the implementation.

• If you want to register core exception handler, please use Exception_Register_EXC (page 113)

• If you want to register core interrupt handler, please use Interrupt_Register_CoreIRQ (page 113)

• If you want to register external interrupt handler, please use Interrupt_Register_ExtIRQ (page 113)

Variables

static unsigned long SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM]
Store the exception handlers for each exception ID.

Note:

• This SystemExceptionHandlers are used to store all the handlers for all the exception codes RISC-V
core provided.

• Exception code 0 - 11, totally 12 exceptions are mapped to SystemExceptionHandlers[0:11]

static unsigned long SystemExtInterruptHandlers[__PLIC_INTNUM]

static unsigned long SystemCoreInterruptHandlers[10]

114 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

ARM Compatiable Functions

group NMSIS_Core_ARMCompatiable_Functions
A few functions that compatiable with ARM CMSIS-Core.

Here we provided a few functions that compatiable with ARM CMSIS-Core, mostly used in the DSP and NN
library.

Defines

__ISB() __RWMB()
Instruction Synchronization Barrier, compatiable with ARM.

__DSB() __RWMB()
Data Synchronization Barrier, compatiable with ARM.

__DMB() __RWMB()
Data Memory Barrier, compatiable with ARM.

__LDRBT(ptr) __LB((ptr))
LDRT Unprivileged (8 bit), ARM Compatiable.

__LDRHT(ptr) __LH((ptr))
LDRT Unprivileged (16 bit), ARM Compatiable.

__LDRT(ptr) __LW((ptr))
LDRT Unprivileged (32 bit), ARM Compatiable.

__STRBT(val, ptr) __SB((ptr), (val))
STRT Unprivileged (8 bit), ARM Compatiable.

__STRHT(val, ptr) __SH((ptr), (val))
STRT Unprivileged (16 bit), ARM Compatiable.

__STRT(val, ptr) __SW((ptr), (val))
STRT Unprivileged (32 bit), ARM Compatiable.

__PKHBT(ARG1, ARG2, ARG3)
Halfword packing instruction.

Combines bits[15:0] of val1 with bits[31:16] of val2 levitated with the val3.

__PKHTB(ARG1, ARG2, ARG3)
Halfword packing instruction.

Combines bits[31:16] of val1 with bits[15:0] of val2 right-shifted with the val3.

5.2. HummingBird RISC-V Processor 115

HummingBird SDK, Release 0.1.4

Functions

__STATIC_FORCEINLINE int32_t __SSAT (int32_t val, uint32_t sat)

Signed Saturate.

Saturates a signed value.

Parameters

• value – [in] Value to be saturated

• sat – [in] Bit position to saturate to (1..32)

Returns Saturated value

__STATIC_FORCEINLINE uint32_t __USAT (int32_t val, uint32_t sat)

Unsigned Saturate.

Saturates an unsigned value.

Parameters

• value – [in] Value to be saturated

• sat – [in] Bit position to saturate to (0..31)

Returns Saturated value

__STATIC_FORCEINLINE uint32_t __REV (uint32_t value)

Reverse byte order (32 bit)

Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.

Parameters value – [in] Value to reverse

Returns Reversed value

__STATIC_FORCEINLINE uint32_t __REV16 (uint32_t value)

Reverse byte order (16 bit)

Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.

Parameters value – [in] Value to reverse

Returns Reversed value

__STATIC_FORCEINLINE int16_t __REVSH (int16_t value)

Reverse byte order (16 bit)

Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes
0x8000.

Parameters value – [in] Value to reverse

Returns Reversed value

__STATIC_FORCEINLINE uint32_t __ROR (uint32_t op1, uint32_t op2)

Rotate Right in unsigned value (32 bit)

Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of
bits.

116 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Parameters

• op1 – [in] Value to rotate

• op2 – [in] Number of Bits to rotate(0-31)

Returns Rotated value

__STATIC_FORCEINLINE uint32_t __RBIT (uint32_t value)

Reverse bit order of value.

Reverses the bit order of the given value.

Parameters value – [in] Value to reverse

Returns Reversed value

__STATIC_FORCEINLINE uint8_t __CLZ (uint32_t data)

Count leading zeros.

Counts the number of leading zeros of a data value.

Parameters data – [in] Value to count the leading zeros

Returns number of leading zeros in value

The prebuilt NMSIS-DSP and NMSIS-NN libraries without dsp are also provided in HummingBird SDK, see NMSIS/
Library/ folder.

Note:

• To support RT-Thread in HBird-SDK, we have to modify the startup_<device>.S, to use macro RTOS_RTTHREAD
defined when using RT-Thread as below:

#ifdef RTOS_RTTHREAD
// Call entry function when using RT-Thread
call entry

#else
call main

#endif

• In order to support RT-Thread initialization macros INIT_XXX_EXPORT, we also need to modify the link script
files, add lines after `` (.rodata .rodata.)`` as below:

. = ALIGN(4);
*(.rdata)
(.rodata .rodata.)
/* RT-Thread added lines begin */
/* section information for initial. */
. = ALIGN(4);
__rt_init_start = .;
KEEP(*(SORT(.rti_fn*)))
__rt_init_end = .;
/* section information for finsh shell */
. = ALIGN(4);
__fsymtab_start = .;
KEEP(*(FSymTab))

(continues on next page)

5.2. HummingBird RISC-V Processor 117

HummingBird SDK, Release 0.1.4

(continued from previous page)

__fsymtab_end = .;
. = ALIGN(4);
__vsymtab_start = .;
KEEP(*(VSymTab))
__vsymtab_end = .;
/* RT-Thread added lines end */
(.gnu.linkonce.r.)

5.2.3 SoC Resource

Regarding the SoC Resource exclude the HummingBird RISC-V Processor Core, it mainly consists of different periph-
erals such UART, GPIO, I2C, SPI, CAN, PWM, DMA, USB and etc.

The APIs to access to the SoC resources are usually defined by the SoC Firmware Library Package provided by SoC
Vendor.

In HummingBird SDK, currently we just required developer to provide the following common resources:

• A UART used to implement the _write and _read stub functions for printf functions

• Common initialization code defined in System_<Device>.c/h in each SoC support package in HummingBird
SDK.

• Before enter to main function, these resources must be initialized:

– The UART used to print must be initialized as 115200 bps, 8bit data, none parity check, 1
stop bit

– PLIC interrupts are disabled and priorities set to 0

– Global interrupt is disabled

Note:

• If you want to learn more about SoC, please click SoC (page 118)

• If you want to learn more about Board, please click Board (page 122)

• If you want to learn more about Peripheral, please click Peripheral (page 127)

5.3 SoC

5.3.1 HummingBird SoC

HummingBird SoC is an evaluation FPGA SoC based on HummingBird RISC-V Core for customer to evaluate Hum-
mingBird Process Core.

Note: HummingBird SoC is no longer maintained now, there is a v2 version, please click HummingBird SoC V2
(page 121) to learn about it.

To get the up to date documentation about this SoC, please click:

118 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

• HummingBird SoC project source code26

Overview

To easy user to evaluate HummingBird RISC-V Processor Core, the prototype SoC (called Hummingbird SoC) is
provided for evaluation purpose.

This prototype SoC includes:

• Processor Core, it can be RISC-V Core.

• On-Chip SRAMs for instruction and data.

• The SoC buses.

• The basic peripherals, such as UART, GPIO, SPI, I2C, etc.

With this prototype SoC, user can run simulations, map it into the FPGA board, and run with real embedded application
examples.

The SoC diagram can be checked as below HummingBird SoC Diagram (page 119)

Fig. 1: HummingBird SoC Diagram

The SoC memory map for SoC resources is as below HummingBird SoC Memory Map (page 120)

If you want to learn more about this evaluation SoC, please check HummingBird SoC project source code27.
26 https://github.com/SI-RISCV/e200_opensource
27 https://github.com/SI-RISCV/e200_opensource

5.3. SoC 119

https://github.com/SI-RISCV/e200_opensource
https://github.com/SI-RISCV/e200_opensource

HummingBird SDK, Release 0.1.4

Fig. 2: HummingBird SoC Memory Map

120 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Supported Boards

In HummingBird SDK, we support the following boards based on HummingBird SoC, see:

• HummingBird Evaluation Kit (page 122)

Usage

If you want to use this HummingBird SoC in HummingBird SDK, you need to set the SOC (page 25) Makefile variable
to hbird.

Choose SoC to be hbird
the following command will build application
using default hbird SoC based board
defined in Build System and application Makefile
make SOC=hbird all

5.3.2 HummingBird SoC V2

HummingBird SoC V2 is an evaluation FPGA SoC based on HummingBird RISC-V Core for customer to evaluate
HummingBird Process Core.

To get the up to date documentation about this SoC, please click:

• HummingBird SoC V2 online documentation28

• HummingBird SoC V2 project source code29

Overview

To easy user to evaluate HummingBird RISC-V Processor Core, the prototype SoC (called Hummingbird SoC) is
provided for evaluation purpose.

This prototype SoC includes:

• Processor Core, it can be RISC-V Core.

• On-Chip SRAMs for instruction and data.

• The SoC buses.

• The basic peripherals, such as UART, GPIO, SPI, I2C, etc.

With this prototype SoC, user can run simulations, map it into the FPGA board, and run with real embedded application
examples.

The SoC diagram can be checked as below HummingBird V2 SoC Diagram (page 122)

If you want to learn more about this evaluation SoC, please click HummingBird SoC V2 online documentation30.
28 https://doc.nucleisys.com/hbirdv2
29 https://github.com/riscv-mcu/e203_hbirdv2
30 https://doc.nucleisys.com/hbirdv2

5.3. SoC 121

https://doc.nucleisys.com/hbirdv2
https://github.com/riscv-mcu/e203_hbirdv2
https://doc.nucleisys.com/hbirdv2

HummingBird SDK, Release 0.1.4

Fig. 3: HummingBird V2 SoC Diagram

Supported Boards

In HummingBird SDK, we support the following boards based on HummingBird SoC, see:

• DDR200T Evaluation Kit (page 124)

• MCU200T Evaluation Kit (page 126)

Usage

If you want to use this HummingBird SoC in HummingBird SDK, you need to set the SOC (page 25) Makefile variable
to hbird.

Choose SoC to be hbird
the following command will build application
using default hbird SoC based board
defined in Build System and application Makefile
make SOC=hbirdv2 all

5.4 Board

5.4.1 HummingBird Evaluation Kit

Overview

Nuclei have customized a FPGA evaluation board (called Hummingbird Evaluation Kit), which can be programmed
with HummingBird SoC FPGA bitstream.

122 Chapter 5. Design and Architecture

HummingBird SDK, Release 0.1.4

Fig. 4: HummingBird FPGA Evaluation Kit

Click HummingBird FPGA Evaluation Kit Board Documents31 to access the documents of this board.

Setup

Follow the guide in HummingBird FPGA Evaluation Kit Board Documents32 to setup the board, make sure the follow-
ing items are set correctly:

• Use Hummingbird debugger to connect the MCU-JTAG on board to your PC in order to download and debug
programs and monitor the UART message.

• Power on the Board using USB doggle.

• The HummingBird SoC FPGA bitstream with HummingBird RISC-V evaluation core inside is programmed to
this board.

• Following steps in board user manual to setup JTAG drivers for your development environment
31 https://nucleisys.com/developboard.php
32 https://nucleisys.com/developboard.php

5.4. Board 123

https://nucleisys.com/developboard.php
https://nucleisys.com/developboard.php

HummingBird SDK, Release 0.1.4

How to use

For HummingBird Evaluation board:

• DOWNLOAD support all the modes list in DOWNLOAD (page 26)

• CORE support all the cores list in CORE (page 27)

To run this application in HummingBird Evaluation board in HummingBird SDK, you just need to use this SOC and
BOARD variables.

Clean the application with DOWNLOAD=ilm CORE=e203
make SOC=hbird BOARD=hbird_eval DOWNLOAD=ilm CORE=e203 clean
Build the application with DOWNLOAD=ilm CORE=e203
make SOC=hbird BOARD=hbird_eval DOWNLOAD=ilm CORE=e203 all
Upload the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbird BOARD=hbird_eval DOWNLOAD=ilm CORE=e203 upload
Debug the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbird BOARD=hbird_eval DOWNLOAD=ilm CORE=e203 debug

Note:

• You can change the value passed to CORE according to the HummingBird RISC-V Core the HummingBird SoC
you have.

• You can also change the value passed to DOWNLOAD to run program in different modes.

• The FreeRTOS and UCOSII demos maybe not working in flashxip download mode in HummingBird board
due to program running in Flash is really too slow. If you want to try these demos, please use ilm or flash
download mode.

5.4.2 DDR200T Evaluation Kit

Overview

Nuclei have customized a FPGA evaluation board (called DDR200T Evaluation Kit), which can be programmed with
HummingBird SoC FPGA bitstream.

Click DDR200T Evaluation Kit Board Documents33 to access the documents of this board.

Setup

Follow the guide in DDR200T Evaluation Kit Board Documents34 to setup the board, make sure the following items
are set correctly:

• Use Hummingbird debugger to connect the MCU-JTAG on board to your PC in order to download and debug
programs and monitor the UART message.

• Power on the Board using USB doggle.

• The HummingBird SoC FPGA bitstream with HummingBird RISC-V evaluation core inside is programmed to
this board.

33 https://nucleisys.com/developboard.php
34 https://nucleisys.com/developboard.php

124 Chapter 5. Design and Architecture

https://nucleisys.com/developboard.php
https://nucleisys.com/developboard.php

HummingBird SDK, Release 0.1.4

Fig. 5: DDR200T Evaluation Kit

• Following steps in board user manual to setup JTAG drivers for your development environment

How to use

For DDR200T Evaluation board:

• DOWNLOAD support all the modes list in DOWNLOAD (page 26)

• CORE support all the cores list in CORE (page 27)

To run this application in HummingBird Evaluation board in HummingBird SDK, you just need to use this SOC and
BOARD variables.

Clean the application with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=ddr200t DOWNLOAD=ilm CORE=e203 clean
Build the application with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=ddr200t DOWNLOAD=ilm CORE=e203 all
Upload the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=ddr200t DOWNLOAD=ilm CORE=e203 upload
Debug the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=ddr200t DOWNLOAD=ilm CORE=e203 debug

Note:

• You can change the value passed to CORE according to the HummingBird RISC-V Core the HummingBird SoC
you have.

• You can also change the value passed to DOWNLOAD to run program in different modes.

5.4. Board 125

HummingBird SDK, Release 0.1.4

• The FreeRTOS and UCOSII demos maybe not working in flashxip download mode in HummingBird board
due to program running in Flash is really too slow. If you want to try these demos, please use ilm or flash
download mode.

5.4.3 MCU200T Evaluation Kit

Overview

Nuclei have customized a FPGA evaluation board (called MCU200T Evaluation Kit), which can be programmed with
HummingBird SoC FPGA bitstream.

Fig. 6: MCU200T Evaluation Kit

Click MCU200T Evaluation Kit Board Documents35 to access the documents of this board.

Setup

Follow the guide in MCU200T Evaluation Kit Board Documents36 to setup the board, make sure the following items
are set correctly:

• Use Hummingbird debugger to connect the MCU-JTAG on board to your PC in order to download and debug
programs and monitor the UART message.

• Power on the Board using USB doggle.

• The HummingBird SoC FPGA bitstream with HummingBird RISC-V evaluation core inside is programmed to
this board.

35 https://nucleisys.com/developboard.php
36 https://nucleisys.com/developboard.php

126 Chapter 5. Design and Architecture

https://nucleisys.com/developboard.php
https://nucleisys.com/developboard.php

HummingBird SDK, Release 0.1.4

• Following steps in board user manual to setup JTAG drivers for your development environment

How to use

For MCU200T Evaluation board:

• DOWNLOAD support all the modes list in DOWNLOAD (page 26)

• CORE support all the cores list in CORE (page 27)

To run this application in HummingBird Evaluation board in HummingBird SDK, you just need to use this SOC and
BOARD variables.

Clean the application with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=mcu200t DOWNLOAD=ilm CORE=e203 clean
Build the application with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=mcu200t DOWNLOAD=ilm CORE=e203 all
Upload the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=mcu200t DOWNLOAD=ilm CORE=e203 upload
Debug the application using openocd and gdb with DOWNLOAD=ilm CORE=e203
make SOC=hbirdv2 BOARD=mcu200t DOWNLOAD=ilm CORE=e203 debug

Note:

• You can change the value passed to CORE according to the HummingBird RISC-V Core the HummingBird SoC
you have.

• You can also change the value passed to DOWNLOAD to run program in different modes.

• The FreeRTOS and UCOSII demos maybe not working in flashxip download mode in HummingBird board
due to program running in Flash is really too slow. If you want to try these demos, please use ilm or flash
download mode.

5.5 Peripheral

5.5.1 Overview

Regarding the peripheral support(such as UART, GPIO, SPI, I2C and etc.) in HummingBird SDK, we didn’t define
a device or peripheral layer for different SoCs, so the peripheral drivers are directly tighted with each SoC, and if
developer want to use the drivers, they can directly use the driver API defined in each SoC.

Considering this peripheral driver difference in each SoC, if you want to write portable code in HummingBird SDK,
you can use include the hbird_sdk_soc.h, then you can write application which only use the resources of RISC-V
Core.

If you want to use all the board resources, you can include the hbird_sdk_hal.h, then you can write application for
your own board, but the application can only run in the board you provided.

5.5. Peripheral 127

HummingBird SDK, Release 0.1.4

5.5.2 Usage

If you want to learn about what peripheral driver you can use, you can check the hbird_sdk_soc.h of each SoC, and
hbird_sdk_hal.h of each board.

For SoC firmware library APIs:

• You can find the HummingBird SoC firmware library APIs in SoC/hbird/Common/Include

If you just want to use SoC firmware library API, you just need to include hbird_sdk_soc.h, then you can use the all
the APIs in that SoC include directory.

For Board related APIs:

• You can find the HummingBird EVAL Board related APIs in SoC/hbird/Board/hbird_eval/Include

If you just want to use all the APIs of Board and SoC, you just need to include hbird_sdk_hal.h, then you can use
the all the APIs in that Board and SoC include directory.

5.6 RTOS

5.6.1 Overview

In HummingBird SDK, we have support three most-used RTOSes in the world, FreeRTOS, UCOSII and RT-Thread
from China.

If you want to use RTOS in your application, you can choose one of the supported RTOSes.

Note: When you want to develop RTOS application in HummingBird SDK, please don’t reconfigure SysTimer and
SysTimer Software Interrupt, since it is already used by RTOS portable code.

5.6.2 FreeRTOS

FreeRTOS37 is a market-leading real-time operating system (RTOS) for microcontrollers and small microprocessors.

In our FreeRTOS portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

These two interrupts are kept as lowest level, and SysTimer Interrupt is initialized as core internal interrupt, and
SysTimer Software Interrupt is initialized as core internal interrupt.

If you want to learn about how to use FreeRTOS APIs, you need to go to its website to learn the FreeRTOS documen-
tation in its website.

In HummingBird SDK, if you want to use FreeRTOS in your application, you need to add RTOS = FreeRTOS in your
application Makefile.

And in your application code, you need to do the following things:

• Add FreeRTOS configuration file -> FreeRTOSConfig.h

• Include FreeRTOS header files

Note:
37 https://www.freertos.org/

128 Chapter 5. Design and Architecture

https://www.freertos.org/

HummingBird SDK, Release 0.1.4

• You can check the application\freertos\demo for reference

• Current version of FreeRTOS used in HummingBird SDK is V10.3.1

• If you want to change the OS ticks per seconds, you can change the configTICK_RATE_HZ defined in
FreeRTOSConfig.h

More information about FreeRTOS get started, please click https://www.freertos.org/FreeRTOS-quick-start-guide.
html

5.6.3 UCOSII

UCOSII38 a priority-based preemptive real-time kernel for microprocessors, written mostly in the programming lan-
guage C. It is intended for use in embedded systems.

In our UCOSII portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

If you want to learn about UCOSII, please click https://www.micrium.com/books/ucosii/

We are using the opensource version of UC-OS2 source code from https://github.com/SiliconLabs/uC-OS2, with op-
timized code for HummingBird RISC-V processors.

In HummingBird SDK, if you want to use UCOSII in your application, you need to add RTOS = UCOSII in your
application Makefile.

And in your application code, you need to do the following things:

• Add UCOSII application configuration header file -> app_cfg.h and os_cfg.h

• Add application hook source file -> app_hooks.c

• Include UCOSII header files

Note:

• You can check the application\ucosii\demo for reference

• The UCOS-II application configuration template files can also be found in https://github.com/SiliconLabs/
uC-OS2/tree/master/Cfg/Template

• Current version of UCOSII used in HummingBird SDK is V2.93.00

• If you want to change the OS ticks per seconds, you can change the OS_TICKS_PER_SEC defined in os_cfg.h

Warning:

• For HummingBird SDK release > v0.2.2, the UCOSII source code is replaced using the version from https:
//github.com/SiliconLabs/uC-OS2/, and application development for UCOSII is also changed, the app_cfg.
h, os_cfg.h and app_hooks.c files are required in application source code.

38 https://www.micrium.com/

5.6. RTOS 129

https://www.freertos.org/FreeRTOS-quick-start-guide.html
https://www.freertos.org/FreeRTOS-quick-start-guide.html
https://www.micrium.com/
https://www.micrium.com/books/ucosii/
https://github.com/SiliconLabs/uC-OS2
https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template
https://github.com/SiliconLabs/uC-OS2/tree/master/Cfg/Template
https://github.com/SiliconLabs/uC-OS2/
https://github.com/SiliconLabs/uC-OS2/

HummingBird SDK, Release 0.1.4

5.6.4 RT-Thread

RT-Thread (page 130) RT-Thread was born in 2006, it is an open source, neutral, and community-based real-time
operating system (RTOS).

RT-Thread is mainly written in C language, easy to understand and easy to port(can be quickly port to a wide range of
mainstream MCUs and module chips).

It applies object-oriented programming methods to real-time system design, making the code elegant, structured, mod-
ular, and very tailorable.

In our support for RT-Thread, we get the source code of RT-Thread from a project called RT-Thread Nano39, which
only provide kernel code of RT-Thread, which is easy to be intergated with HummingBird SDK.

In our RT-Thread portable code, we are using SysTimer Interrupt as RTOS SysTick Interrupt, and using SysTimer
Software Interrupt to do task switch.

And also the rt_hw_board_init function is implemented in our portable code.

If you want to learn about RT-Thread, please click:

• For Chinese version, click https://www.rt-thread.org/document/site/

• For English version, click https://github.com/RT-Thread/rt-thread

In HummingBird SDK, if you want to use RT-Thread in your application, you need to add RTOS = RTThread in your
application Makefile.

And in your application code, you need to do the following things:

• Add RT-Thread application configuration header file -> rtconfig.h

• Include RT-Thread header files

Note:

• In RT-Thread, the main function is created as a RT-Thread thread, so you don’t need to do any OS initialization
work, it is done before main

5.7 Application

5.7.1 Overview

In HummingBird SDK, we just provided applications which can run in different boards without any changes in code
to demostrate the baremetal service, freertos service and ucosii service features.

The provided applications can be divided into three categories:

• Bare-metal applications: Located in application/baremetal

• FreeRTOS applications: Located in application/freertos

• UCOSII applications: Located in application/ucosii

If you want to develop your own application in HummingBird SDK, please click Application Development (page 34)
to learn more about it.

The following applications are running using HummingBird board.
39 https://github.com/RT-Thread/rtthread-nano

130 Chapter 5. Design and Architecture

https://github.com/RT-Thread/rtthread-nano
https://www.rt-thread.org/document/site/
https://github.com/RT-Thread/rt-thread

HummingBird SDK, Release 0.1.4

5.7.2 Bare-metal applications

helloworld

This helloworld application40 is used to print hello world, and also will check this RISC-V CSR MISA register value.

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the helloworld directory
cd application/baremetal/helloworld
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 11:18:08
Download Mode: ILM
CPU Frequency 15999631 Hz
MISA: 0x40001105
MISA: RV32IMAC
0: Hello World From RISC-V Processor!
1: Hello World From RISC-V Processor!
2: Hello World From RISC-V Processor!
3: Hello World From RISC-V Processor!
4: Hello World From RISC-V Processor!
5: Hello World From RISC-V Processor!
6: Hello World From RISC-V Processor!
7: Hello World From RISC-V Processor!
8: Hello World From RISC-V Processor!
9: Hello World From RISC-V Processor!
10: Hello World From RISC-V Processor!
11: Hello World From RISC-V Processor!
12: Hello World From RISC-V Processor!
13: Hello World From RISC-V Processor!
14: Hello World From RISC-V Processor!
15: Hello World From RISC-V Processor!
16: Hello World From RISC-V Processor!
17: Hello World From RISC-V Processor!
18: Hello World From RISC-V Processor!
19: Hello World From RISC-V Processor!

40 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/helloworld

5.7. Application 131

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/helloworld

HummingBird SDK, Release 0.1.4

demo_timer

This demo_timer application41 is used to demostrate how to use the CORE TIMER API including the Timer Interrupt
and Timer Software Interrupt.

• Both interrupts are registered as interrupt.

• First the timer interrupt will run for 10 times

• Then the software timer interrupt will start to run for 10 times

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the demo_timer directory
cd application/baremetal/demo_timer
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 11:43:13
Download Mode: ILM
CPU Frequency 16006512 Hz
MTimer IRQ handler 1
init timer and start
MTimer IRQ handler 2
MTimer IRQ handler 3
MTimer IRQ handler 4
MTimer IRQ handler 5
MTimer IRQ handler 6
MTimer IRQ handler 7
MTimer IRQ handler 8
MTimer IRQ handler 9
MTimer IRQ handler 10
MTimer SW IRQ handler 1
MTimer SW IRQ handler 2
MTimer SW IRQ handler 3
MTimer SW IRQ handler 4
MTimer SW IRQ handler 5
MTimer SW IRQ handler 6
MTimer SW IRQ handler 7
MTimer SW IRQ handler 8
MTimer SW IRQ handler 9
MTimer SW IRQ handler 10
MTimer msip and mtip interrupt test finish and pass

41 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_timer

132 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_timer

HummingBird SDK, Release 0.1.4

demo_plic

This demo_plic application42 is used to demostrate how to use the PLIC API and Interrupt.

Note: In this application’s Makefile, we provided comments in Makefile about optimize for code size.

If you want to optimize this application for code size, you can set the COMMON_FLAGS variable to the following values,
we recommend to use -Os -flto.

Table 1: Code size optimization for demo_plic on HummingBird target
COMMON_FLAGS text(bytes) data(bytes) bss(bytes) total(bytes)

9608 112 2500 12220
-flto 9552 112 2500 12164
-Os 7316 112 2500 9928
-Os -flto 6942 112 2500 9554
-Os -msave-restore -fno-unroll-loops 7360 112 2500 9972
-Os -msave-restore -fno-unroll-loops -flto 7008 112 2500 9620

• This is an example of triggering an external interrupt

• Two GPIO rising edge interrupts are used

• When the button 1 and button 2 are pressed respectively the program triggers the external rising edge interrupt
and the interrupt processing function will show which button triggered the interrupt on the serial port

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the demo_plic directory
cd application/baremetal/demo_plic
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload
Press button1 and button2, see uart output

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 16:37:14
Download Mode: ILM
CPU Frequency 15999303 Hz
Enter Button 1 interrupt
Enter Button 1 interrupt
Enter Button 2 interrupt
Enter Button 2 interrupt

42 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_plic

5.7. Application 133

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_plic

HummingBird SDK, Release 0.1.4

demo_dsp

This demo_dsp application43 is used to demostrate how to NMSIS-DSP API.

• Mainly show how we can use DSP library without dsp instructions and header files.

• It mainly demo the riscv_conv_xx functions and its reference functions

Note:

• For other HummingBird Processor Core based SoC, please check whether it has DSP feature enabled to decide
which kind of NMSIS-DSP library to use.

• Even our NMSIS-DSP library with DSP disabled are also optimized, so it can also provide good performance in
some functions.

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the demo_dsp directory
cd application/baremetal/demo_dsp
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 DSP_ENABLE=OFF clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 DSP_ENABLE=OFF upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 15:55:06
Download Mode: ILM
CPU Frequency 16006512 Hz
CSV, riscv_conv_q31, 4103925
CSV, ref_conv_q31, 12979250
SUCCESS, riscv_conv_q31
CSV, riscv_conv_q15, 437418
CSV, ref_conv_q15, 882230
SUCCESS, riscv_conv_q15
CSV, riscv_conv_q7, 839
CSV, ref_conv_q7, 2382
SUCCESS, riscv_conv_q7
CSV, riscv_conv_fast_q15, 357503
CSV, ref_conv_fast_q15, 774856
SUCCESS, riscv_conv_fast_q15
CSV, riscv_conv_fast_q31, 1918358
CSV, ref_conv_fast_q31, 13692367
SUCCESS, riscv_conv_fast_q31
CSV, riscv_conv_opt_q15, 524310
CSV, ref_conv_opt_q15, 882232
SUCCESS, riscv_conv_opt_q15
CSV, riscv_conv_opt_q7, 1535
CSV, ref_conv_opt_q7, 2382
SUCCESS, riscv_conv_opt_q7
CSV, riscv_conv_fast_opt_q15, 454263

(continues on next page)

43 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_dsp

134 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/demo_dsp

HummingBird SDK, Release 0.1.4

(continued from previous page)

CSV, ref_conv_fast_opt_q15, 789929
SUCCESS, riscv_conv_fast_opt_q15
all test are passed. Well done!

coremark

This coremark benchmark application44 is used to run EEMBC CoreMark Software.

EEMBC CoreMark Software is a product of EEMBC and is provided under the terms of the CoreMark License that
is distributed with the official EEMBC COREMARK Software release. If you received this EEMBC CoreMark Soft-
ware without the accompanying CoreMark License, you must discontinue use and download the official release from
www.coremark.org.

In HummingBird SDK, we provided code and Makefile for this coremark application. You can also optimize the
COMMON_FLAGS defined in coremark application Makefile to get different score number.

• By default, this application runs for 500 iterations, you can also change this in Makefile. e.g. Change this
-DITERATIONS=500 to value such as -DITERATIONS=5000

• macro PERFORMANCE_RUN=1 is defined

• PFLOAT = 1 is added in its Makefile to enable float value print

Note:

• Since for each SoC platforms, the CPU frequency is different, so user need to change the ITERATIONS defined
in Makefile to proper value to let the coremark run at least 10 seconds

• For example, for the HummingBird based boards supported in HummingBird SDK, we suggest to change
-DITERATIONS=500 to -DITERATIONS=5000

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the coremark directory
cd application/baremetal/benchmark/coremark
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 16:01:58
Download Mode: ILM
CPU Frequency 15999631 Hz
Start to run coremark for 500 iterations
2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks : 233879271
Total time (secs): 14.617908
Iterations/Sec : 34.204621

(continues on next page)

44 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/coremark

5.7. Application 135

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/coremark

HummingBird SDK, Release 0.1.4

(continued from previous page)

Iterations : 500
Compiler version : GCC9.2.0
Compiler flags : -O2 -flto -funroll-all-loops -finline-limit=600 -ftree-dominator-opts␣
→˓-fno-if-conversion2 -fselective-scheduling -fno-code-hoisting -fno-common -funroll-
→˓loops -finline-functions -falign-functions=4 -falign-jumps=4 -falign-loops=4
Memory location : STACK
seedcrc : 0xe9f5
[0]crclist : 0xe714
[0]crcmatrix : 0x1fd7
[0]crcstate : 0x8e3a
[0]crcfinal : 0xa14c
Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 34.204621 / GCC9.2.0 -O2 -flto -funroll-all-loops -finline-limit=600 -
→˓ftree-dominator-opts -fno-if-conversion2 -fselective-scheduling -fno-code-hoisting -
→˓fno-common -funroll-loops -finline-functions -falign-functions=4 -falign-jumps=4 -
→˓falign-loops=4 / STACK

Print Personal Added Addtional Info to Easy Visual Analysis

(Iterations is: 500
(total_ticks is: 233879271

(*) Assume the core running at 1 MHz
So the CoreMark/MHz can be caculated by:
(Iterations*1000000/total_ticks) = 2.137855 CoreMark/MHz

dhrystone

This dhrystone benchmark application45 is used to run DHRYSTONE Benchmark Software.

The Dhrystone benchmark program has become a popular benchmark for CPU/compiler performance measurement,
in particular in the area of minicomputers, workstations, PC’s and microprocesors.

• It apparently satisfies a need for an easy-to-use integer benchmark;

• it gives a first performance indication which is more meaningful than MIPS numbers which, in their literal
meaning (million instructions per second), cannot be used across different instruction sets (e.g. RISC vs. CISC).

• With the increasing use of the benchmark, it seems necessary to reconsider the benchmark and to check whether
it can still fulfill this function.

In HummingBird SDK, we provided code and Makefile for this dhrystone application. You can also optimize the
COMMON_FLAGS defined in dhrystone application Makefile to get different score number.

• PFLOAT = 1 is added in its Makefile to enable float value print

• You can change Number_Of_Runs in dhry_1.c line 134 to increate or decrease number of iterations

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the dhrystone directory
cd application/baremetal/benchmark/dhrystone

(continues on next page)

45 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/dhrystone

136 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/dhrystone

HummingBird SDK, Release 0.1.4

(continued from previous page)

Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 16:15:27
Download Mode: ILM
CPU Frequency 15999959 Hz

Dhrystone Benchmark, Version 2.1 (Language: C)

Program compiled without 'register' attribute

Please give the number of runs through the benchmark:
Execution starts, 500000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob: 5
should be: 5

Bool_Glob: 1
should be: 1

Ch_1_Glob: A
should be: A

Ch_2_Glob: B
should be: B

Arr_1_Glob[8]: 7
should be: 7

Arr_2_Glob[8][7]: 500010
should be: Number_Of_Runs + 10

Ptr_Glob->
Ptr_Comp: -1879035440

should be: (implementation-dependent)
Discr: 0

should be: 0
Enum_Comp: 2

should be: 2
Int_Comp: 17

should be: 17
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
Ptr_Comp: -1879035440

should be: (implementation-dependent), same as above
Discr: 0

should be: 0
Enum_Comp: 1

should be: 1
Int_Comp: 18

(continues on next page)

5.7. Application 137

HummingBird SDK, Release 0.1.4

(continued from previous page)

should be: 18
Str_Comp: DHRYSTONE PROGRAM, SOME STRING

should be: DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc: 5

should be: 5
Int_2_Loc: 13

should be: 13
Int_3_Loc: 7

should be: 7
Enum_Loc: 1

should be: 1
Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING

should be: DHRYSTONE PROGRAM, 1'ST STRING
Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING

should be: DHRYSTONE PROGRAM, 2'ND STRING

(*) User_Cycle for total run through Dhrystone with loops 500000:
220000037

So the DMIPS/MHz can be caculated by:
1000000/(User_Cycle/Number_Of_Runs)/1757 = 1.293527 DMIPS/MHz

whetstone

This whetstone benchmark application46 is used to run C/C++ Whetstone Benchmark Software (Single or Double
Precision).

The Fortran Whetstone programs were the first general purpose benchmarks that set industry standards of computer
system performance. Whetstone programs also addressed the question of the efficiency of different programming
languages, an important issue not covered by more contemporary standard benchmarks.

In HummingBird SDK, we provided code and Makefile for this whetstone application. You can also optimize the
COMMON_FLAGS defined in whetstone application Makefile to get different score number.

• PFLOAT = 1 is added in its Makefile to enable float value print

• Extra LDFLAGS := -lm is added in its Makefile to include the math library

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the whetstone directory
cd application/baremetal/benchmark/whetstone
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 16:18:26
Download Mode: ILM
CPU Frequency 15997337 Hz

(continues on next page)

46 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/whetstone

138 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/baremetal/benchmark/whetstone

HummingBird SDK, Release 0.1.4

(continued from previous page)

##
Single Precision C Whetstone Benchmark Opt 3 32 Bit
Calibrate

15.43 Seconds 1 Passes (x 100)

Use 1 passes (x 100)

Single Precision C/C++ Whetstone Benchmark

Loop content Result MFLOPS MOPS Seconds

N1 floating point -1.12475013732910156 0.144 0.133
N2 floating point -1.12274742126464844 0.144 0.930
N3 if then else 1.00000000000000000 0.000 0.000
N4 fixed point 12.00000000000000000 0.806 0.391
N5 sin,cos etc. 0.49909299612045288 0.014 6.086
N6 floating point 0.99999982118606567 0.128 4.225
N7 assignments 3.00000000000000000 72.090 0.003
N8 exp,sqrt etc. 0.75110614299774170 0.010 3.664

MWIPS 0.648 15.431

MWIPS/MHz 0.041 15.431

5.7.3 FreeRTOS applications

demo

This freertos demo application47 is show basic freertos task functions.

• Two freertos tasks are created

• A software timer is created

In HummingBird SDK, we provided code and Makefile for this freertos demo application.

• RTOS = FreeRTOS is added in its Makefile to include FreeRTOS service

• The configTICK_RATE_HZ in FreeRTOSConfig.h is set to 200, you can change it to other number according
to your requirement.

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the freertos demo directory
cd application/freertos/demo
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

47 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/freertos/demo

5.7. Application 139

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/freertos/demo

HummingBird SDK, Release 0.1.4

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 17:15:24
Download Mode: ILM
CPU Frequency 15998320 Hz
Before StartScheduler
Enter to task_1
task1 is running 0.....
Enter to task_2
task2 is running 0.....
timers Callback 0
timers Callback 1
task1 is running 1.....
task2 is running 1.....
timers Callback 2
timers Callback 3
task1 is running 2.....
task2 is running 2.....
timers Callback 4
timers Callback 5
task1 is running 3.....
task2 is running 3.....
timers Callback 6
timers Callback 7
task1 is running 4.....
task2 is running 4.....
timers Callback 8
timers Callback 9
task1 is running 5.....
task2 is running 5.....
timers Callback 10
timers Callback 11

5.7.4 UCOSII applications

demo

This ucosii demo application48 is show basic ucosii task functions.

• 4 tasks are created

• 1 task is created first, and then create 3 other tasks and then suspend itself

In HummingBird SDK, we provided code and Makefile for this ucosii demo application.

• RTOS = UCOSII is added in its Makefile to include UCOSII service

• The OS_TICKS_PER_SEC in os_cfg.h is by default set to 200, you can change it to other number according
to your requirement.

How to run this application:

48 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/ucosii/demo

140 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/ucosii/demo

HummingBird SDK, Release 0.1.4

Assume that you can set up the Tools and HummingBird SDK environment
cd to the ucosii demo directory
cd application/ucosii/demo
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 17:20:13
Download Mode: ILM
CPU Frequency 15998320 Hz
Start ucosii...
create start task success
start all task...
task3 is running... 1
task2 is running... 1
task1 is running... 1
task3 is running... 2
task2 is running... 2
task3 is running... 3
task2 is running... 3
task1 is running... 2
task3 is running... 4
task2 is running... 4
task3 is running... 5
task2 is running... 5
task1 is running... 3
task3 is running... 6
task2 is running... 6
task3 is running... 7
task2 is running... 7
task1 is running... 4
task3 is running... 8
task2 is running... 8
task3 is running... 9
task2 is running... 9
task1 is running... 5
task3 is running... 10
task2 is running... 10
task3 is running... 11
task2 is running... 11
task1 is running... 6
task3 is running... 12

5.7. Application 141

HummingBird SDK, Release 0.1.4

5.7.5 RT-Thread applications

demo

This rt-thread demo application49 is show basic rt-thread thread functions.

• main function is a pre-created thread by RT-Thread

• main thread will create 5 test threads using the same function thread_entry

In HummingBird SDK, we provided code and Makefile for this rtthread demo application.

• RTOS = RTThread is added in its Makefile to include RT-Thread service

• The RT_TICK_PER_SECOND in rtconfig.h is by default set to 200, you can change it to other number
according to your requirement.

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the rtthread demo directory
cd application/rtthread/demo
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Jul 16 2020, 17:22:44
Download Mode: ILM
CPU Frequency 16000286 Hz

\ | /
- RT - Thread Operating System
/ | \ 3.1.3 build Jul 16 2020
2006 - 2019 Copyright by rt-thread team
Main thread count: 0
thread 0 count: 0
thread 1 count: 0
thread 2 count: 0
thread 3 count: 0
thread 4 count: 0
thread 0 count: 1
thread 1 count: 1
thread 2 count: 1
thread 3 count: 1
thread 4 count: 1
Main thread count: 1
thread 0 count: 2
thread 1 count: 2
thread 2 count: 2
thread 3 count: 2
thread 4 count: 2
thread 0 count: 3

(continues on next page)

49 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/rtthread/demo

142 Chapter 5. Design and Architecture

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/rtthread/demo

HummingBird SDK, Release 0.1.4

(continued from previous page)

thread 1 count: 3
thread 2 count: 3
thread 3 count: 3
thread 4 count: 3
Main thread count: 2
thread 0 count: 4
thread 1 count: 4
thread 2 count: 4
thread 3 count: 4
thread 4 count: 4
thread 0 count: 5
thread 1 count: 5
thread 2 count: 5
thread 3 count: 5
thread 4 count: 5
Main thread count: 3
thread 0 count: 6
thread 1 count: 6
thread 2 count: 6
thread 3 count: 6
thread 4 count: 6
thread 0 count: 7
thread 1 count: 7
thread 2 count: 7
thread 3 count: 7
thread 4 count: 7
Main thread count: 4
thread 0 count: 8
thread 1 count: 8
thread 2 count: 8
thread 3 count: 8
thread 4 count: 8
thread 0 count: 9
thread 1 count: 9
thread 2 count: 9
thread 3 count: 9
thread 4 count: 9

msh

This rt-thread msh application50 demonstrates a shell in serial console which is a component of rt-thread.

• MSH_CMD_EXPORT(hbird, msh hbird demo) exports a command hbird to shell

In HummingBird SDK, we provided code and Makefile for this rtthread msh application.

• RTOS = RTThread is added in its Makefile to include RT-Thread service

• RTTHREAD_MSH := 1 is added in its Makefile to include RT-Thread msh component

• The RT_TICK_PER_SECOND in rtconfig.h is by default set to 200, you can change it to other number
according to your requirement.

50 https://github.com/riscv-mcu/hbird-sdk/tree/master/application/rtthread/msh

5.7. Application 143

https://github.com/riscv-mcu/hbird-sdk/tree/master/application/rtthread/msh

HummingBird SDK, Release 0.1.4

How to run this application:

Assume that you can set up the Tools and HummingBird SDK environment
cd to the rtthread msh directory
cd application/rtthread/msh
Clean the application first
make SOC=hbird BOARD=hbird_eval CORE=e203 clean
Build and upload the application
make SOC=hbird BOARD=hbird_eval CORE=e203 upload

Expected output as below:

HummingBird SDK Build Time: Nov 25 2020, 09:18:36
Download Mode: FLASH
CPU Frequency 15978659 Hz

\ | /
- RT - Thread Operating System
/ | \ 3.1.3 build Nov 25 2020
2006 - 2019 Copyright by rt-thread team
Hello RT-Thread!
msh >
RT-Thread shell commands:
list_timer list_mailbox list_sem list_thread version ps help hbird
msh >hbird
Hello HBird SDK!
msh >

144 Chapter 5. Design and Architecture

CHAPTER

SIX

CHANGELOG

6.1 V0.1.4

This is release version 0.1.4 of HBird SDK.

• SoC

– Fix PLIC example fail in Nuclei Studio, due to SOC_HBIRDV2 not defined in npk.yml

• NMSIS

– Fix typo of global: true in npk.yml

• CI

– Update gitlab & github ci workflow

6.2 V0.1.3

This is release version 0.1.3 of HBird SDK.

• Build

– Important changes about build system:

∗ The SoC and RTOS related makefiles are moving to its own folder, and controlled By build.mk inside
in in the SoC/<SOC> or OS/<RTOS> folders.

∗ Middlware component build system is also available now, you can add you own middleware or library
into Components folder, such as Components/tjpgd or Components/fatfs, and you can include
this component using make variable MIDDLEWARE in application Makefile, such as MIDDLEWARE :=
fatfs, or MIDDLEWARE := tjpgd fatfs.

∗ Each middleware component folder should create a build.mk, which is used to control the component
build settings and source code management.

∗ An extra DOWNLOAD_MODE_STRING macro is passed to represent the DOWNLOAD mode string.

– Change openocd --pipe option to -c "gdb_port pipe; log_output openocd.log"

– Remove -ex "monitor flash protect 0 0 last off"when upload or debug program to avoid error
when openocd configuration file didn’t configure a flash

– Add cleanall target in <HBIRD_SDK_ROOT>/Makefile, you can clean all the applications defined by
EXTRA_APP_ROOTDIRS variable

– Fix size target of build system

145

HummingBird SDK, Release 0.1.4

• SoC

– hbird and hbirdv2 SoC cores only support e203 and e203e now.

6.3 V0.1.2

This is official 0.1.2 of HummingBird SDK.

Here are the main changes since last release:

• SOC

– More more newlib stub functions for hbird and hbirdv2 SoC

• doc

– Update changelog

– Add rt-thread msh application doc

• application

– Add rt-thread msh application

• Build

– Add RTTHREAD_MSH makefile variable which is valid only for RTThread

• OS

– Add RT-Thread MSH shell component into RT-Thread source code

• CI

– Add initial github workflow support for building documentation and sdk

6.4 V0.1.1

This is official 0.1.1 of HummingBird SDK.

Here are the main changes since last release:

• SOC

– More drivers are added to hbirdv2

• doc

– Update changelog

• application

– Fix typos in rt-thread application

– Update freertos application

146 Chapter 6. Changelog

HummingBird SDK, Release 0.1.4

6.5 V0.1.0

This is official release 0.1.0 of HummingBird SDK.

Here are the main features of this release:

• HummingBird SDK is developed based on Nuclei SDK version 0.2.4 release.

• Support Windows and Linux development in command line using Make

• Support HummingBird FPGA evaluation board and HummingBird FPGA DDR-200T evaluation board

– The HummingBird FPGA evaluation board is used to run evaluation FPGA bitstream of HummingBird
E201, E203, E205 processor cores

– The HummingBird FPGA DDR-200T evaluation board is used to run evaluation FPGA bitstream of
HummingBird E201, E203, E205 processor cores

• Support different download modes flashxip, ilm, flash for HummingBird FPGA evaluation board

• Support different RTOSes such as FreeRTOS, UCOS-II and RT-Thread

• This hbird-sdk is forked from nuclei-sdk51 , and adapted for opensource HummingBird RISC-V Core.

51 https://github.com/nuclei-software/nuclei-sdk

6.5. V0.1.0 147

https://github.com/nuclei-software/nuclei-sdk

HummingBird SDK, Release 0.1.4

148 Chapter 6. Changelog

CHAPTER

SEVEN

FAQ

7.1 Why I can’t download application in Windows?

If you met the following issue as below message showed:

Nuclei OpenOCD, 64-bit Open On-Chip Debugger 0.10.0+dev-00014-g0eae03214 (2019-12-12-
→˓07:43)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
Remote communication error. Target disconnected.: Success.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
"monitor" command not supported by this target.
You can't do that when your target is ``exec'
"monitor" command not supported by this target.
"monitor" command not supported by this target.
"Successfully uploaded hello_world.elf "

Please check whether your driver is installed successfully as the board user manual described, especially, for Hum-
mingBird Evaluation boards, you need to download the HummingBird Debugger Windows Driver from https:
//nucleisys.com/developboard.php, and install it.

Note: The USB driver might lost when you re-plug the USB port, you might need to reinstall the driver.

7.2 Why I can’t download application in Linux?

Please check that whether you have followed the board user manual to setup the USB JTAG drivers correctly. The
windows steps and linux steps are different, please take care.

149

https://nucleisys.com/developboard.php
https://nucleisys.com/developboard.php

HummingBird SDK, Release 0.1.4

7.3 Why the provided application is not running correctly in my Hum-
mingBird Evaluation Board?

Please check the following items:

1. Did you program the correct HummingBird Evaluation FPGA bitstream?

2. Did you re-power the board, when you just programmed the board with FPGA bitstream?

3. Did you choose the right CORE as the HummingBird Evaluation FPGA bitstream present?

4. If your application is RTOS demos, did you run in flashxip mode, if yes, it is expected due to flash speed is
really slow, you’d better try ilm or flash mode.

5. If still not working, you might need to check whether the FPGA bitstream is correct or not?

150 Chapter 7. FAQ

CHAPTER

EIGHT

LICENSE

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
(continues on next page)

151

HummingBird SDK, Release 0.1.4

(continued from previous page)

form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(continues on next page)

152 Chapter 8. License

HummingBird SDK, Release 0.1.4

(continued from previous page)

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each

(continues on next page)

153

HummingBird SDK, Release 0.1.4

(continued from previous page)

Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

154 Chapter 8. License

HummingBird SDK, Release 0.1.4

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

155

HummingBird SDK, Release 0.1.4

156 Chapter 8. License

CHAPTER

NINE

GLOSSARY

API (Application Program Interface) A defined set of routines and protocols for building application software.

DSP (Digital Signal Processing) is the use of digital processing, such as by computers or more specialized digital
signal processors, to perform a wide variety of signal processing operations.

ISR (Interrupt Service Routine) Also known as an interrupt handler, an ISR is a callback function whose execution is
triggered by a hardware interrupt (or software interrupt instructions) and is used to handle high-priority condi-
tions that require interrupting the current code executing on the processor.

NN (Neural Network) is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed
of artificial neurons or nodes.

XIP (eXecute In Place) a method of executing programs directly from long term storage rather than copying it into
RAM, saving writable memory for dynamic data and not the static program code.

157

HummingBird SDK, Release 0.1.4

158 Chapter 9. Glossary

CHAPTER

TEN

APPENDIX

• Nuclei RISCV Tools and Documents: https://nucleisys.com/download.php

• Nuclei riscv-openocd: https://github.com/riscv-mcu/riscv-openocd

• Nuclei riscv-binutils-gdb: https://github.com/riscv-mcu/riscv-binutils-gdb

• Nuclei riscv-gnu-toolchain: https://github.com/riscv-mcu/riscv-gnu-toolchain

• Nuclei riscv-newlib: https://github.com/riscv-mcu/riscv-newlib

• Nuclei riscv-gcc: https://github.com/riscv-mcu/riscv-gcc

• Nuclei Software Organization in Github: https://github.com/Nuclei-Software/

• Nuclei Software Organization in Gitee: https://gitee.com/Nuclei-Software/

• HummingBird SDK: https://github.com/Nuclei-Software/nuclei-sdk

• NMSIS: https://github.com/Nuclei-Software/NMSIS

• Nuclei Bumblebee Core Document: https://github.com/nucleisys/Bumblebee_Core_Doc

• Nuclei RISC-V IP Products: https://www.nucleisys.com/product.php

• RISC-V MCU Community Website: https://www.riscv-mcu.com/

• Nuclei Spec Documentation: https://doc.nucleisys.com/nuclei_spec/

• HummingBird SDK Documentation: https://doc.nucleisys.com/hbird_sdk/

• NMSIS Documentation: https://doc.nucleisys.com/nmsis/

159

https://nucleisys.com/download.php
https://github.com/riscv-mcu/riscv-openocd
https://github.com/riscv-mcu/riscv-binutils-gdb
https://github.com/riscv-mcu/riscv-gnu-toolchain
https://github.com/riscv-mcu/riscv-newlib
https://github.com/riscv-mcu/riscv-gcc
https://github.com/Nuclei-Software/
https://gitee.com/Nuclei-Software/
https://github.com/Nuclei-Software/nuclei-sdk
https://github.com/Nuclei-Software/NMSIS
https://github.com/nucleisys/Bumblebee_Core_Doc
https://www.nucleisys.com/product.php
https://www.riscv-mcu.com/
https://doc.nucleisys.com/nuclei_spec/
https://doc.nucleisys.com/hbird_sdk/
https://doc.nucleisys.com/nmsis/

HummingBird SDK, Release 0.1.4

160 Chapter 10. Appendix

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• search

161

HummingBird SDK, Release 0.1.4

162 Chapter 11. Indices and tables

INDEX

Symbols
_FLD2VAL (C macro), 92, 93
_VAL2FLD (C macro), 92, 93
__ALIGNED (C macro), 52
__ASM (C macro), 51
__COMPILER_BARRIER (C macro), 52
__CPU_RELAX (C macro), 87, 88
__DMB (C macro), 115
__DSB (C macro), 115
__FENCE (C macro), 87
__HBIRD_RISCV_REV (C macro), 50
__I (C macro), 92, 93
__IM (C macro), 92, 93
__INLINE (C macro), 51
__INTERRUPT (C macro), 52
__IO (C macro), 92, 93
__IOM (C macro), 92, 93
__ISB (C macro), 115
__LDRBT (C macro), 115
__LDRHT (C macro), 115
__LDRT (C macro), 115
__NMSIS_VERSION (C macro), 50
__NMSIS_VERSION_MAJOR (C macro), 50
__NMSIS_VERSION_MINOR (C macro), 50
__NMSIS_VERSION_PATCH (C macro), 50
__NO_RETURN (C macro), 51
__O (C macro), 92, 93
__OM (C macro), 92, 93
__PACKED (C macro), 51
__PACKED_STRUCT (C macro), 51
__PACKED_UNION (C macro), 51
__PKHBT (C macro), 115
__PKHTB (C macro), 115
__RARELY (C macro), 52
__RESTRICT (C macro), 52
__RISCV_FLEN (C macro), 105
__RISCV_XLEN (C macro), 78
__RMB (C macro), 87
__RV_CSR_CLEAR (C macro), 54
__RV_CSR_READ (C macro), 53
__RV_CSR_READ_CLEAR (C macro), 53
__RV_CSR_READ_SET (C macro), 53

__RV_CSR_SET (C macro), 53
__RV_CSR_SWAP (C macro), 53
__RV_CSR_WRITE (C macro), 53
__RV_FLD (C macro), 107
__RV_FLOAD (C macro), 108
__RV_FLW (C macro), 106
__RV_FSD (C macro), 107
__RV_FSTORE (C macro), 108
__RV_FSW (C macro), 106
__RWMB (C macro), 87
__SMP_RMB (C macro), 87, 88
__SMP_RWMB (C macro), 87, 88
__SMP_WMB (C macro), 87, 88
__STATIC_FORCEINLINE (C macro), 51
__STATIC_INLINE (C macro), 51
__STRBT (C macro), 115
__STRHT (C macro), 115
__STRT (C macro), 115
__UNALIGNED_UINT16_READ (C macro), 51
__UNALIGNED_UINT16_WRITE (C macro), 51
__UNALIGNED_UINT32_READ (C macro), 51
__UNALIGNED_UINT32_WRITE (C macro), 51
__USED (C macro), 51
__USUALLY (C macro), 52
__VECTOR_SIZE (C macro), 51
__WEAK (C macro), 51
__WMB (C macro), 87, 88
__disable_FPU (C macro), 106
__enable_FPU (C macro), 106
__get_FCSR (C macro), 105
__get_FFLAGS (C macro), 105
__get_FRM (C macro), 105
__has_builtin (C macro), 51
__set_FCSR (C macro), 105
__set_FFLAGS (C macro), 106
__set_FRM (C macro), 105

A
API, 157

C
CAUSE_BREAKPOINT (C macro), 77

163

HummingBird SDK, Release 0.1.4

CAUSE_FAULT_FETCH (C macro), 77
CAUSE_FAULT_LOAD (C macro), 77
CAUSE_FAULT_STORE (C macro), 77
CAUSE_HYPERVISOR_ECALL (C macro), 78
CAUSE_ILLEGAL_INSTRUCTION (C macro), 77
CAUSE_MACHINE_ECALL (C macro), 78
CAUSE_MISALIGNED_FETCH (C macro), 77
CAUSE_MISALIGNED_LOAD (C macro), 77
CAUSE_MISALIGNED_STORE (C macro), 77
CAUSE_SUPERVISOR_ECALL (C macro), 77
CAUSE_USER_ECALL (C macro), 77
CONFIG_STRING_ADDR (C macro), 75
core_exception_handler (C++ function), 112
Core_Register_IRQ (C++ function), 110
core_trap_handler (C++ function), 114
CSR_CYCLE (C macro), 57
CSR_CYCLEH (C macro), 64
CSR_DCSR (C macro), 61
CSR_DPC (C macro), 61
CSR_DSCRATCH (C macro), 61
CSR_FCSR (C macro), 57
CSR_FFLAGS (C macro), 57
CSR_FRM (C macro), 57
CSR_HPMCOUNTER10 (C macro), 58
CSR_HPMCOUNTER10H (C macro), 65
CSR_HPMCOUNTER11 (C macro), 58
CSR_HPMCOUNTER11H (C macro), 65
CSR_HPMCOUNTER12 (C macro), 58
CSR_HPMCOUNTER12H (C macro), 65
CSR_HPMCOUNTER13 (C macro), 58
CSR_HPMCOUNTER13H (C macro), 65
CSR_HPMCOUNTER14 (C macro), 58
CSR_HPMCOUNTER14H (C macro), 65
CSR_HPMCOUNTER15 (C macro), 58
CSR_HPMCOUNTER15H (C macro), 65
CSR_HPMCOUNTER16 (C macro), 58
CSR_HPMCOUNTER16H (C macro), 65
CSR_HPMCOUNTER17 (C macro), 58
CSR_HPMCOUNTER17H (C macro), 65
CSR_HPMCOUNTER18 (C macro), 58
CSR_HPMCOUNTER18H (C macro), 65
CSR_HPMCOUNTER19 (C macro), 58
CSR_HPMCOUNTER19H (C macro), 65
CSR_HPMCOUNTER20 (C macro), 58
CSR_HPMCOUNTER20H (C macro), 65
CSR_HPMCOUNTER21 (C macro), 58
CSR_HPMCOUNTER21H (C macro), 65
CSR_HPMCOUNTER22 (C macro), 58
CSR_HPMCOUNTER22H (C macro), 65
CSR_HPMCOUNTER23 (C macro), 58
CSR_HPMCOUNTER23H (C macro), 65
CSR_HPMCOUNTER24 (C macro), 58
CSR_HPMCOUNTER24H (C macro), 65
CSR_HPMCOUNTER25 (C macro), 59

CSR_HPMCOUNTER25H (C macro), 65
CSR_HPMCOUNTER26 (C macro), 59
CSR_HPMCOUNTER26H (C macro), 66
CSR_HPMCOUNTER27 (C macro), 59
CSR_HPMCOUNTER27H (C macro), 66
CSR_HPMCOUNTER28 (C macro), 59
CSR_HPMCOUNTER28H (C macro), 66
CSR_HPMCOUNTER29 (C macro), 59
CSR_HPMCOUNTER29H (C macro), 66
CSR_HPMCOUNTER3 (C macro), 57
CSR_HPMCOUNTER30 (C macro), 59
CSR_HPMCOUNTER30H (C macro), 66
CSR_HPMCOUNTER31 (C macro), 59
CSR_HPMCOUNTER31H (C macro), 66
CSR_HPMCOUNTER3H (C macro), 64
CSR_HPMCOUNTER4 (C macro), 58
CSR_HPMCOUNTER4H (C macro), 64
CSR_HPMCOUNTER5 (C macro), 58
CSR_HPMCOUNTER5H (C macro), 65
CSR_HPMCOUNTER6 (C macro), 58
CSR_HPMCOUNTER6H (C macro), 65
CSR_HPMCOUNTER7 (C macro), 58
CSR_HPMCOUNTER7H (C macro), 65
CSR_HPMCOUNTER8 (C macro), 58
CSR_HPMCOUNTER8H (C macro), 65
CSR_HPMCOUNTER9 (C macro), 58
CSR_HPMCOUNTER9H (C macro), 65
CSR_INSTRET (C macro), 57
CSR_INSTRETH (C macro), 64
CSR_JALMNXTI (C macro), 68
CSR_MARCHID (C macro), 64
CSR_MBADADDR (C macro), 60
CSR_MCACHE_CTL (C macro), 68
CSR_MCACHE_CTL_DE (C macro), 70
CSR_MCACHE_CTL_IE (C macro), 70
CSR_MCAUSE (C macro), 60
CSR_MCAUSE_Type (C++ union), 82
CSR_MCAUSE_Type::_reserved0 (C++ member), 83
CSR_MCAUSE_Type::_reserved1 (C++ member), 83
CSR_MCAUSE_Type::b (C++ member), 83
CSR_MCAUSE_Type::d (C++ member), 83
CSR_MCAUSE_Type::exccode (C++ member), 83
CSR_MCAUSE_Type::interrupt (C++ member), 83
CSR_MCAUSE_Type::minhv (C++ member), 83
CSR_MCAUSE_Type::mpie (C++ member), 83
CSR_MCAUSE_Type::mpil (C++ member), 83
CSR_MCAUSE_Type::mpp (C++ member), 83
CSR_MCLICBASE (C macro), 68
CSR_MCOUNTEREN (C macro), 60
CSR_MCOUNTINHIBIT (C macro), 68
CSR_MCOUNTINHIBIT_Type (C++ union), 83
CSR_MCOUNTINHIBIT_Type::_reserved0 (C++ mem-

ber), 83

164 Index

HummingBird SDK, Release 0.1.4

CSR_MCOUNTINHIBIT_Type::_reserved1 (C++ mem-
ber), 84

CSR_MCOUNTINHIBIT_Type::b (C++ member), 84
CSR_MCOUNTINHIBIT_Type::cy (C++ member), 83
CSR_MCOUNTINHIBIT_Type::d (C++ member), 84
CSR_MCOUNTINHIBIT_Type::ir (C++ member), 83
CSR_MCYCLE (C macro), 61
CSR_MCYCLEH (C macro), 66
CSR_MDCAUSE (C macro), 68
CSR_MEDELEG (C macro), 59
CSR_MEPC (C macro), 60
CSR_MHARTID (C macro), 64
CSR_MHPMCOUNTER10 (C macro), 62
CSR_MHPMCOUNTER10H (C macro), 66
CSR_MHPMCOUNTER11 (C macro), 62
CSR_MHPMCOUNTER11H (C macro), 66
CSR_MHPMCOUNTER12 (C macro), 62
CSR_MHPMCOUNTER12H (C macro), 66
CSR_MHPMCOUNTER13 (C macro), 62
CSR_MHPMCOUNTER13H (C macro), 66
CSR_MHPMCOUNTER14 (C macro), 62
CSR_MHPMCOUNTER14H (C macro), 66
CSR_MHPMCOUNTER15 (C macro), 62
CSR_MHPMCOUNTER15H (C macro), 66
CSR_MHPMCOUNTER16 (C macro), 62
CSR_MHPMCOUNTER16H (C macro), 67
CSR_MHPMCOUNTER17 (C macro), 62
CSR_MHPMCOUNTER17H (C macro), 67
CSR_MHPMCOUNTER18 (C macro), 62
CSR_MHPMCOUNTER18H (C macro), 67
CSR_MHPMCOUNTER19 (C macro), 62
CSR_MHPMCOUNTER19H (C macro), 67
CSR_MHPMCOUNTER20 (C macro), 62
CSR_MHPMCOUNTER20H (C macro), 67
CSR_MHPMCOUNTER21 (C macro), 62
CSR_MHPMCOUNTER21H (C macro), 67
CSR_MHPMCOUNTER22 (C macro), 62
CSR_MHPMCOUNTER22H (C macro), 67
CSR_MHPMCOUNTER23 (C macro), 62
CSR_MHPMCOUNTER23H (C macro), 67
CSR_MHPMCOUNTER24 (C macro), 62
CSR_MHPMCOUNTER24H (C macro), 67
CSR_MHPMCOUNTER25 (C macro), 62
CSR_MHPMCOUNTER25H (C macro), 67
CSR_MHPMCOUNTER26 (C macro), 62
CSR_MHPMCOUNTER26H (C macro), 67
CSR_MHPMCOUNTER27 (C macro), 62
CSR_MHPMCOUNTER27H (C macro), 67
CSR_MHPMCOUNTER28 (C macro), 62
CSR_MHPMCOUNTER28H (C macro), 67
CSR_MHPMCOUNTER29 (C macro), 62
CSR_MHPMCOUNTER29H (C macro), 67
CSR_MHPMCOUNTER3 (C macro), 61
CSR_MHPMCOUNTER30 (C macro), 63

CSR_MHPMCOUNTER30H (C macro), 67
CSR_MHPMCOUNTER31 (C macro), 63
CSR_MHPMCOUNTER31H (C macro), 67
CSR_MHPMCOUNTER3H (C macro), 66
CSR_MHPMCOUNTER4 (C macro), 61
CSR_MHPMCOUNTER4H (C macro), 66
CSR_MHPMCOUNTER5 (C macro), 61
CSR_MHPMCOUNTER5H (C macro), 66
CSR_MHPMCOUNTER6 (C macro), 61
CSR_MHPMCOUNTER6H (C macro), 66
CSR_MHPMCOUNTER7 (C macro), 61
CSR_MHPMCOUNTER7H (C macro), 66
CSR_MHPMCOUNTER8 (C macro), 61
CSR_MHPMCOUNTER8H (C macro), 66
CSR_MHPMCOUNTER9 (C macro), 62
CSR_MHPMCOUNTER9H (C macro), 66
CSR_MHPMEVENT10 (C macro), 63
CSR_MHPMEVENT11 (C macro), 63
CSR_MHPMEVENT12 (C macro), 63
CSR_MHPMEVENT13 (C macro), 63
CSR_MHPMEVENT14 (C macro), 63
CSR_MHPMEVENT15 (C macro), 63
CSR_MHPMEVENT16 (C macro), 63
CSR_MHPMEVENT17 (C macro), 63
CSR_MHPMEVENT18 (C macro), 63
CSR_MHPMEVENT19 (C macro), 63
CSR_MHPMEVENT20 (C macro), 64
CSR_MHPMEVENT21 (C macro), 64
CSR_MHPMEVENT22 (C macro), 64
CSR_MHPMEVENT23 (C macro), 64
CSR_MHPMEVENT24 (C macro), 64
CSR_MHPMEVENT25 (C macro), 64
CSR_MHPMEVENT26 (C macro), 64
CSR_MHPMEVENT27 (C macro), 64
CSR_MHPMEVENT28 (C macro), 64
CSR_MHPMEVENT29 (C macro), 64
CSR_MHPMEVENT3 (C macro), 63
CSR_MHPMEVENT30 (C macro), 64
CSR_MHPMEVENT31 (C macro), 64
CSR_MHPMEVENT4 (C macro), 63
CSR_MHPMEVENT5 (C macro), 63
CSR_MHPMEVENT6 (C macro), 63
CSR_MHPMEVENT7 (C macro), 63
CSR_MHPMEVENT8 (C macro), 63
CSR_MHPMEVENT9 (C macro), 63
CSR_MIDELEG (C macro), 59
CSR_MIE (C macro), 59
CSR_MIMPID (C macro), 64
CSR_MINSTRET (C macro), 61
CSR_MINSTRETH (C macro), 66
CSR_MINTSTATUS (C macro), 67
CSR_MIP (C macro), 60
CSR_MISA (C macro), 59
CSR_MISA_Type (C++ union), 79

Index 165

HummingBird SDK, Release 0.1.4

CSR_MISA_Type::_reserved1 (C++ member), 79
CSR_MISA_Type::_reserved2 (C++ member), 80
CSR_MISA_Type::_reserved4 (C++ member), 80
CSR_MISA_Type::_reserved5 (C++ member), 80
CSR_MISA_Type::_resreved3 (C++ member), 80
CSR_MISA_Type::a (C++ member), 79
CSR_MISA_Type::b (C++ member), 79, 80
CSR_MISA_Type::c (C++ member), 79
CSR_MISA_Type::d (C++ member), 79
CSR_MISA_Type::e (C++ member), 79
CSR_MISA_Type::f (C++ member), 79
CSR_MISA_Type::g (C++ member), 79
CSR_MISA_Type::h (C++ member), 79
CSR_MISA_Type::i (C++ member), 79
CSR_MISA_Type::j (C++ member), 79
CSR_MISA_Type::l (C++ member), 79
CSR_MISA_Type::m (C++ member), 80
CSR_MISA_Type::mxl (C++ member), 80
CSR_MISA_Type::n (C++ member), 80
CSR_MISA_Type::p (C++ member), 80
CSR_MISA_Type::q (C++ member), 80
CSR_MISA_Type::s (C++ member), 80
CSR_MISA_Type::t (C++ member), 80
CSR_MISA_Type::u (C++ member), 80
CSR_MISA_Type::v (C++ member), 80
CSR_MISA_Type::x (C++ member), 80
CSR_MMISC_CTL (C macro), 68
CSR_MNVEC (C macro), 68
CSR_MNXTI (C macro), 67
CSR_MSAVECAUSE1 (C macro), 68
CSR_MSAVECAUSE2 (C macro), 68
CSR_MSAVEDCAUSE1 (C macro), 68
CSR_MSAVEDCAUSE2 (C macro), 68
CSR_MSAVEEPC1 (C macro), 68
CSR_MSAVEEPC2 (C macro), 68
CSR_MSAVESTATUS (C macro), 68
CSR_MSCOUNTEREN (C macro), 63
CSR_MSCRATCH (C macro), 60
CSR_MSCRATCHCSW (C macro), 67
CSR_MSCRATCHCSWL (C macro), 67
CSR_MSTATUS (C macro), 59
CSR_MSTATUS_Type (C++ union), 81
CSR_MSTATUS_Type::_reserved0 (C++ member), 81
CSR_MSTATUS_Type::_reserved1 (C++ member), 81
CSR_MSTATUS_Type::_reserved2 (C++ member), 81
CSR_MSTATUS_Type::_reserved3 (C++ member), 81
CSR_MSTATUS_Type::_reserved4 (C++ member), 81
CSR_MSTATUS_Type::_reserved6 (C++ member), 82
CSR_MSTATUS_Type::b (C++ member), 82
CSR_MSTATUS_Type::d (C++ member), 82
CSR_MSTATUS_Type::fs (C++ member), 81
CSR_MSTATUS_Type::mie (C++ member), 81
CSR_MSTATUS_Type::mpie (C++ member), 81
CSR_MSTATUS_Type::mpp (C++ member), 81

CSR_MSTATUS_Type::mprv (C++ member), 81
CSR_MSTATUS_Type::sd (C++ member), 82
CSR_MSTATUS_Type::sie (C++ member), 81
CSR_MSTATUS_Type::spie (C++ member), 81
CSR_MSTATUS_Type::sum (C++ member), 82
CSR_MSTATUS_Type::xs (C++ member), 81
CSR_MSUBM (C macro), 68
CSR_MTVEC (C macro), 60
CSR_MTVEC_Type (C++ union), 82
CSR_MTVEC_Type::addr (C++ member), 82
CSR_MTVEC_Type::b (C++ member), 82
CSR_MTVEC_Type::d (C++ member), 82
CSR_MTVEC_Type::mode (C++ member), 82
CSR_MTVT (C macro), 67
CSR_MTVT2 (C macro), 68
CSR_MUCOUNTEREN (C macro), 63
CSR_MVENDORID (C macro), 64
CSR_PMPADDR0 (C macro), 60
CSR_PMPADDR1 (C macro), 60
CSR_PMPADDR10 (C macro), 61
CSR_PMPADDR11 (C macro), 61
CSR_PMPADDR12 (C macro), 61
CSR_PMPADDR13 (C macro), 61
CSR_PMPADDR14 (C macro), 61
CSR_PMPADDR15 (C macro), 61
CSR_PMPADDR2 (C macro), 60
CSR_PMPADDR3 (C macro), 60
CSR_PMPADDR4 (C macro), 60
CSR_PMPADDR5 (C macro), 60
CSR_PMPADDR6 (C macro), 60
CSR_PMPADDR7 (C macro), 60
CSR_PMPADDR8 (C macro), 60
CSR_PMPADDR9 (C macro), 60
CSR_PMPCFG0 (C macro), 60
CSR_PMPCFG1 (C macro), 60
CSR_PMPCFG2 (C macro), 60
CSR_PMPCFG3 (C macro), 60
CSR_PUSHMCAUSE (C macro), 68
CSR_PUSHMEPC (C macro), 68
CSR_PUSHMSUBM (C macro), 68
CSR_SBADADDR (C macro), 59
CSR_SCAUSE (C macro), 59
CSR_SEPC (C macro), 59
CSR_SIE (C macro), 59
CSR_SIP (C macro), 59
CSR_SLEEPVALUE (C macro), 68
CSR_SPTBR (C macro), 59
CSR_SSCRATCH (C macro), 59
CSR_SSTATUS (C macro), 59
CSR_STVEC (C macro), 59
CSR_TDATA1 (C macro), 61
CSR_TDATA2 (C macro), 61
CSR_TDATA3 (C macro), 61
CSR_TIME (C macro), 57

166 Index

HummingBird SDK, Release 0.1.4

CSR_TIMEH (C macro), 64
CSR_TSELECT (C macro), 61
CSR_TXEVT (C macro), 68
CSR_USTATUS (C macro), 57
CSR_WFE (C macro), 69

D
DCAUSE_FAULT_FETCH_INST (C macro), 78
DCAUSE_FAULT_FETCH_PMP (C macro), 78
DCAUSE_FAULT_LOAD_INST (C macro), 78
DCAUSE_FAULT_LOAD_NICE (C macro), 78
DCAUSE_FAULT_LOAD_PMP (C macro), 78
DCAUSE_FAULT_STORE_INST (C macro), 78
DCAUSE_FAULT_STORE_PMP (C macro), 78
DCSR_CAUSE (C macro), 71
DCSR_CAUSE_DEBUGINT (C macro), 71
DCSR_CAUSE_HALT (C macro), 71
DCSR_CAUSE_HWBP (C macro), 71
DCSR_CAUSE_NONE (C macro), 71
DCSR_CAUSE_STEP (C macro), 71
DCSR_CAUSE_SWBP (C macro), 71
DCSR_DEBUGINT (C macro), 71
DCSR_EBREAKH (C macro), 71
DCSR_EBREAKM (C macro), 71
DCSR_EBREAKS (C macro), 71
DCSR_EBREAKU (C macro), 71
DCSR_FULLRESET (C macro), 70
DCSR_HALT (C macro), 71
DCSR_NDRESET (C macro), 70
DCSR_PRV (C macro), 71
DCSR_STEP (C macro), 71
DCSR_STOPCYCLE (C macro), 71
DCSR_STOPTIME (C macro), 71
DCSR_XDEBUGVER (C macro), 70
DEFAULT_MTVEC (C macro), 75
DEFAULT_NMIVEC (C macro), 75
DEFAULT_RSTVEC (C macro), 75
DRAM_BASE (C macro), 75
DSP, 157

E
EXC_HANDLER (C++ type), 112
Exception_Get_EXC (C++ function), 114
Exception_Init (C++ function), 112
Exception_Register_EXC (C++ function), 113
EXT_IO_BASE (C macro), 75

F
FFLAGS_AE_DZ (C macro), 76
FFLAGS_AE_NV (C macro), 76
FFLAGS_AE_NX (C macro), 76
FFLAGS_AE_OF (C macro), 76
FFLAGS_AE_UF (C macro), 76
FREG (C macro), 76

FRM_RNDMODE_DYN (C macro), 76
FRM_RNDMODE_RDN (C macro), 75
FRM_RNDMODE_RMM (C macro), 75
FRM_RNDMODE_RNE (C macro), 75
FRM_RNDMODE_RTZ (C macro), 75
FRM_RNDMODE_RUP (C macro), 75

I
INT_HANDLER (C++ type), 112
Interrupt_Get_CoreIRQ (C++ function), 113
Interrupt_Get_ExtIRQ (C++ function), 113
Interrupt_Init (C++ function), 112
Interrupt_Register_CoreIRQ (C++ function), 113
Interrupt_Register_ExtIRQ (C++ function), 113
IRQ_COP (C macro), 75
IRQ_H_EXT (C macro), 75
IRQ_H_SOFT (C macro), 74
IRQ_H_TIMER (C macro), 75
IRQ_HOST (C macro), 75
IRQ_M_EXT (C macro), 75
IRQ_M_SOFT (C macro), 74
IRQ_M_TIMER (C macro), 75
IRQ_S_EXT (C macro), 75
IRQ_S_SOFT (C macro), 74
IRQ_S_TIMER (C macro), 75
IRQn (C++ enum), 98, 99
IRQn::PLIC_INT0_IRQn (C++ enumerator), 98, 101
IRQn::PLIC_INT1_IRQn (C++ enumerator), 98, 101
IRQn::PLIC_INT_MAX (C++ enumerator), 98, 101
IRQn::Reserved0_IRQn (C++ enumerator), 98, 99
IRQn::Reserved10_IRQn (C++ enumerator), 98, 100
IRQn::Reserved11_IRQn (C++ enumerator), 98, 100
IRQn::Reserved12_IRQn (C++ enumerator), 98, 100
IRQn::Reserved13_IRQn (C++ enumerator), 98, 100
IRQn::Reserved14_IRQn (C++ enumerator), 98, 100
IRQn::Reserved15_IRQn (C++ enumerator), 98, 100
IRQn::Reserved1_IRQn (C++ enumerator), 98, 100
IRQn::Reserved2_IRQn (C++ enumerator), 98, 100
IRQn::Reserved4_IRQn (C++ enumerator), 98, 100
IRQn::Reserved5_IRQn (C++ enumerator), 98, 100
IRQn::Reserved6_IRQn (C++ enumerator), 98, 100
IRQn::Reserved8_IRQn (C++ enumerator), 98, 100
IRQn::Reserved9_IRQn (C++ enumerator), 98, 100
IRQn::SysTimer_IRQn (C++ enumerator), 98, 100
IRQn::SysTimerSW_IRQn (C++ enumerator), 98, 100
ISR, 157

M
MAX_SYSTEM_EXCEPTION_NUM (C macro), 111
MCAUSE_INTERRUPT (C macro), 73
MCONTROL_ACTION (C macro), 72
MCONTROL_ACTION_DEBUG_EXCEPTION (C macro), 72
MCONTROL_ACTION_DEBUG_MODE (C macro), 72
MCONTROL_ACTION_TRACE_EMIT (C macro), 72

Index 167

HummingBird SDK, Release 0.1.4

MCONTROL_ACTION_TRACE_START (C macro), 72
MCONTROL_ACTION_TRACE_STOP (C macro), 72
MCONTROL_CHAIN (C macro), 72
MCONTROL_DMODE (C macro), 71
MCONTROL_EXECUTE (C macro), 72
MCONTROL_H (C macro), 72
MCONTROL_LOAD (C macro), 72
MCONTROL_M (C macro), 72
MCONTROL_MASKMAX (C macro), 71
MCONTROL_MATCH (C macro), 72
MCONTROL_MATCH_EQUAL (C macro), 72
MCONTROL_MATCH_GE (C macro), 72
MCONTROL_MATCH_LT (C macro), 72
MCONTROL_MATCH_MASK_HIGH (C macro), 73
MCONTROL_MATCH_MASK_LOW (C macro), 73
MCONTROL_MATCH_NAPOT (C macro), 72
MCONTROL_S (C macro), 72
MCONTROL_SELECT (C macro), 71
MCONTROL_STORE (C macro), 72
MCONTROL_TIMING (C macro), 71
MCONTROL_TYPE (C macro), 71
MCONTROL_TYPE_MATCH (C macro), 72
MCONTROL_TYPE_NONE (C macro), 72
MCONTROL_U (C macro), 72
MCOUNTINHIBIT_CY (C macro), 74
MCOUNTINHIBIT_IR (C macro), 74
MIE_HEIE (C macro), 73
MIE_HSIE (C macro), 73
MIE_HTIE (C macro), 73
MIE_MEIE (C macro), 73
MIE_MSIE (C macro), 73
MIE_MTIE (C macro), 73
MIE_SEIE (C macro), 73
MIE_SSIE (C macro), 73
MIE_STIE (C macro), 73
MIP_HEIP (C macro), 73
MIP_HSIP (C macro), 73
MIP_HTIP (C macro), 73
MIP_MEIP (C macro), 73
MIP_MSIP (C macro), 73
MIP_MTIP (C macro), 73
MIP_SEIP (C macro), 73
MIP_SSIP (C macro), 73
MIP_STIP (C macro), 73
MMISC_CTL_BPU (C macro), 74
MMISC_CTL_MISALIGN (C macro), 74
MMISC_CTL_NMI_CAUSE_FFF (C macro), 74
MSTATUS32_SD (C macro), 70
MSTATUS64_SD (C macro), 70
MSTATUS_FS (C macro), 69
MSTATUS_FS_CLEAN (C macro), 70
MSTATUS_FS_DIRTY (C macro), 70
MSTATUS_FS_INITIAL (C macro), 70
MSTATUS_HIE (C macro), 69

MSTATUS_HPIE (C macro), 69
MSTATUS_MIE (C macro), 69
MSTATUS_MPIE (C macro), 69
MSTATUS_MPP (C macro), 69
MSTATUS_MPRV (C macro), 69
MSTATUS_MXR (C macro), 69
MSTATUS_PUM (C macro), 69
MSTATUS_SIE (C macro), 69
MSTATUS_SPIE (C macro), 69
MSTATUS_SPP (C macro), 69
MSTATUS_UIE (C macro), 69
MSTATUS_UPIE (C macro), 69
MSTATUS_VM (C macro), 70
MSTATUS_XS (C macro), 69

N
NN, 157

P
PLIC_BASE (C macro), 85
PLIC_CLAIM_OFFSET (C macro), 84
PLIC_CLAIM_SHIFT_PER_TARGET (C macro), 85
PLIC_ENABLE_OFFSET (C macro), 84
PLIC_ENABLE_SHIFT_PER_TARGET (C macro), 84
PLIC_PENDING_OFFSET (C macro), 84
PLIC_PENDING_SHIFT_PER_SOURCE (C macro), 84
PLIC_PRIORITY_OFFSET (C macro), 84
PLIC_PRIORITY_SHIFT_PER_SOURCE (C macro), 84
PLIC_Register_IRQ (C++ function), 110
PLIC_THRESHOLD_OFFSET (C macro), 84
PLIC_THRESHOLD_SHIFT_PER_TARGET (C macro), 84
PMP_A (C macro), 76
PMP_A_NA4 (C macro), 76
PMP_A_NAPOT (C macro), 76
PMP_A_TOR (C macro), 76
PMP_COUNT (C macro), 76
PMP_L (C macro), 76
PMP_R (C macro), 76
PMP_SHIFT (C macro), 76
PMP_W (C macro), 76
PMP_X (C macro), 76
PRV_H (C macro), 74
PRV_M (C macro), 74
PRV_S (C macro), 74
PRV_U (C macro), 74
PTE_A (C macro), 77
PTE_D (C macro), 77
PTE_G (C macro), 77
PTE_PPN_SHIFT (C macro), 77
PTE_R (C macro), 77
PTE_SOFT (C macro), 77
PTE_TABLE (C macro), 77
PTE_U (C macro), 77
PTE_V (C macro), 77

168 Index

HummingBird SDK, Release 0.1.4

PTE_W (C macro), 77
PTE_X (C macro), 77

R
RESTORE_FPU_CONTEXT (C macro), 109
rv_csr_t (C++ type), 78
rv_fpu_t (C++ type), 109

S
SAVE_FPU_CONTEXT (C macro), 108
SIP_SSIP (C macro), 74
SIP_STIP (C macro), 74
SSTATUS32_SD (C macro), 70
SSTATUS64_SD (C macro), 70
SSTATUS_FS (C macro), 70
SSTATUS_PUM (C macro), 70
SSTATUS_SIE (C macro), 70
SSTATUS_SPIE (C macro), 70
SSTATUS_SPP (C macro), 70
SSTATUS_UIE (C macro), 70
SSTATUS_UPIE (C macro), 70
SSTATUS_XS (C macro), 70
system_default_exception_handler (C++ func-

tion), 112
system_default_interrupt_handler (C++ func-

tion), 112
SystemBannerPrint (C++ function), 110
SystemCoreClock (C++ member), 111
SystemCoreClockUpdate (C++ function), 110
SystemCoreInterruptHandlers (C++ member), 114
SystemExceptionHandlers (C++ member), 114
SystemExtInterruptHandlers (C++ member), 114
SystemInit (C++ function), 110
SysTimer (C macro), 85
SysTimer_BASE (C macro), 85
SysTimer_MSIP_MSIP_Msk (C macro), 85
SysTimer_MSIP_MSIP_Pos (C macro), 85
SysTimer_MSIP_Msk (C macro), 85
SysTimer_MTIMER_Msk (C macro), 85
SysTimer_MTIMERCMP_Msk (C macro), 85
SysTimer_Type (C++ struct), 85

T
T_UINT16_READ (C++ member), 52
T_UINT16_WRITE (C++ member), 52
T_UINT32_READ (C++ member), 52
T_UINT32_WRITE (C++ member), 52

V
VM_MBARE (C macro), 74
VM_MBB (C macro), 74
VM_MBBID (C macro), 74
VM_SV32 (C macro), 74

VM_SV39 (C macro), 74
VM_SV48 (C macro), 74

W
WFE_WFE (C macro), 74

X
XIP, 157

Index 169

	Overview
	Introduction
	Design and Architecture
	Get Started
	Contributing
	Copyright
	License

	Quick Startup
	Setup Tools and Environment
	Install and Setup Tools in Windows
	Install and Setup Tools in Linux

	Get and Setup HummingBird SDK
	Build, Run and Debug Sample Application
	Hardware Preparation
	Build Application
	Run Application
	Debug Application

	Create helloworld Application
	Advanced Usage

	Developer Guide
	Code Style
	Build System based on Makefile
	Makefile Structure
	Makefile.base
	gmsl
	Makefile.misc
	Makefile.conf
	Makefile.components
	Makefile.rules
	Makefile.files
	Makefile.soc
	Makefile.rtos
	Makefile.core
	Makefile.global
	Makefile.local

	Makefile targets of make command
	Makefile variables passed by make command
	SOC
	BOARD
	DOWNLOAD
	CORE
	SIMULATION
	GDB_PORT
	BANNER
	V
	SILENT

	Makefile variables used only in Application Makefile
	TARGET
	HBIRD_SDK_ROOT
	RTOS
	MIDDLEWARE
	PFLOAT
	NEWLIB
	NOGC
	RTTHREAD_MSH

	Build Related Makefile variables used only in Application Makefile
	INCDIRS
	C_INCDIRS
	CXX_INCDIRS
	ASM_INCDIRS
	SRCDIRS
	C_SRCDIRS
	CXX_SRCDIRS
	ASM_SRCDIRS
	C_SRCS
	CXX_SRCS
	ASM_SRCS
	COMMON_FLAGS
	CFLAGS
	CXXFLAGS
	ASMFLAGS
	LDFLAGS
	LDLIBS
	LIBDIRS
	LINKER_SCRIPT

	Application Development
	Overview
	Add Extra Source Code
	Add Extra Include Directory
	Add Extra Build Options
	Optimize For Code Size
	Change Link Script
	Set Default Make Options
	Set Default Global Make Options For HummingBird SDK
	Set Local Make Options For Your Application

	Build HummingBird SDK Documentation
	Install Tools
	Build The Documentation

	Contributing
	Port your HummingBird SoC into HummingBird SDK
	Submit your issue
	Submit your pull request
	Git commit guide

	Design and Architecture
	Overview
	Directory Structure
	Project Components

	HummingBird RISC-V Processor
	Introduction
	NMSIS in HummingBird SDK
	NMSIS Core For HummingBird RISC-V
	NMSIS Core API
	Version Control
	Compiler Control
	Core CSR Register Access
	Core CSR Encoding
	Core CSR Register Definitions
	Other Core Related Macros
	Register Define and Type Definitions
	Core
	PLIC
	SysTimer
	CPU Intrinsic Functions
	Peripheral Access
	Systick Timer(SysTimer)
	SysTimer API
	Interrupts and Exceptions
	Interrupt and Exception API
	FPU Functions
	System Device Configuration
	Interrupt Exception NMI Handling
	ARM Compatiable Functions

	SoC Resource

	SoC
	HummingBird SoC
	Overview
	Supported Boards
	Usage

	HummingBird SoC V2
	Overview
	Supported Boards
	Usage

	Board
	HummingBird Evaluation Kit
	Overview
	Setup
	How to use

	DDR200T Evaluation Kit
	Overview
	Setup
	How to use

	MCU200T Evaluation Kit
	Overview
	Setup
	How to use

	Peripheral
	Overview
	Usage

	RTOS
	Overview
	FreeRTOS
	UCOSII
	RT-Thread

	Application
	Overview
	Bare-metal applications
	helloworld
	demo_timer
	demo_plic
	demo_dsp
	coremark
	dhrystone
	whetstone

	FreeRTOS applications
	demo

	UCOSII applications
	demo

	RT-Thread applications
	demo
	msh

	Changelog
	V0.1.4
	V0.1.3
	V0.1.2
	V0.1.1
	V0.1.0

	FAQ
	Why I can’t download application in Windows?
	Why I can’t download application in Linux?
	Why the provided application is not running correctly in my HummingBird Evaluation Board?

	License
	Glossary
	Appendix
	Indices and tables
	Index

